Hadamard's lemma

From HandWiki
Revision as of 16:27, 8 February 2024 by Corlink (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, Hadamard's lemma, named after Jacques Hadamard, is essentially a first-order form of Taylor's theorem, in which we can express a smooth, real-valued function exactly in a convenient manner.

Statement

Hadamard's lemma[1] — Let [math]\displaystyle{ f }[/math] be a smooth, real-valued function defined on an open, star-convex neighborhood [math]\displaystyle{ U }[/math] of a point [math]\displaystyle{ a }[/math] in [math]\displaystyle{ n }[/math]-dimensional Euclidean space. Then [math]\displaystyle{ f(x) }[/math] can be expressed, for all [math]\displaystyle{ x \in U, }[/math] in the form: [math]\displaystyle{ f(x) = f(a) + \sum_{i=1}^n \left(x_i - a_i\right) g_i(x), }[/math] where each [math]\displaystyle{ g_i }[/math] is a smooth function on [math]\displaystyle{ U, }[/math] [math]\displaystyle{ a = \left(a_1, \ldots, a_n\right), }[/math] and [math]\displaystyle{ x = \left(x_1, \ldots, x_n\right). }[/math]

Proof

Consequences and applications

Corollary[1] — If [math]\displaystyle{ f : \R \to \R }[/math] is smooth and [math]\displaystyle{ f(0) = 0 }[/math] then [math]\displaystyle{ f(x)/x }[/math] is a smooth function on [math]\displaystyle{ \R. }[/math] Explicitly, this conclusion means that the function [math]\displaystyle{ \R \to \R }[/math] that sends [math]\displaystyle{ x \in \R }[/math] to [math]\displaystyle{ \begin{cases} f(x)/x & \text{ if } x \neq 0 \\ \lim_{t \to 0} f(t)/t & \text{ if } x = 0 \\ \end{cases} }[/math] is a well-defined smooth function on [math]\displaystyle{ \R. }[/math]

Corollary[1] — If [math]\displaystyle{ y, z \in \R^n }[/math] are distinct points and [math]\displaystyle{ f : \R^n \to \R }[/math] is a smooth function that satisfies [math]\displaystyle{ f(z) = 0 = f(y) }[/math] then there exist smooth functions [math]\displaystyle{ g_i, h_i \in C^{\infty}\left(\R^n\right) }[/math] ([math]\displaystyle{ i = 1, \ldots, 3n - 2 }[/math]) satisfying [math]\displaystyle{ g_i(z) = 0 = h_i(y) }[/math] for every [math]\displaystyle{ i }[/math] such that [math]\displaystyle{ f = \sum_{i}^{} g_i h_i. }[/math]

See also

  • Bump function – Smooth and compactly supported function
  • Smoothness – Number of derivatives of a function (mathematics)
  • Taylor's theorem – Approximation of a function by a truncated power series

Citations

  1. 1.0 1.1 1.2 Nestruev 2020, pp. 17-18.

References