Primary ideal
In mathematics, specifically commutative algebra, a proper ideal Q of a commutative ring A is said to be primary if whenever xy is an element of Q then x or yn is also an element of Q, for some n > 0. For example, in the ring of integers Z, (pn) is a primary ideal if p is a prime number.
The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals. This result is known as the Lasker–Noether theorem. Consequently,[1] an irreducible ideal of a Noetherian ring is primary.
Various methods of generalizing primary ideals to noncommutative rings exist,[2] but the topic is most often studied for commutative rings. Therefore, the rings in this article are assumed to be commutative rings with identity.
Examples and properties
- The definition can be rephrased in a more symmetric manner: an ideal [math]\displaystyle{ \mathfrak{q} }[/math] is primary if, whenever [math]\displaystyle{ x y \in \mathfrak{q} }[/math], we have [math]\displaystyle{ x \in \mathfrak{q} }[/math] or [math]\displaystyle{ y \in \mathfrak{q} }[/math] or [math]\displaystyle{ x, y \in \sqrt{\mathfrak{q}} }[/math]. (Here [math]\displaystyle{ \sqrt{\mathfrak{q}} }[/math] denotes the radical of [math]\displaystyle{ \mathfrak{q} }[/math].)
- An ideal Q of R is primary if and only if every zero divisor in R/Q is nilpotent. (Compare this to the case of prime ideals, where P is prime if and only if every zero divisor in R/P is actually zero.)
- Any prime ideal is primary, and moreover an ideal is prime if and only if it is primary and semiprime (also called radical ideal in the commutative case).
- Every primary ideal is primal.[3]
- If Q is a primary ideal, then the radical of Q is necessarily a prime ideal P, and this ideal is called the associated prime ideal of Q. In this situation, Q is said to be P-primary.
- On the other hand, an ideal whose radical is prime is not necessarily primary: for example, if [math]\displaystyle{ R = k[x,y,z]/(x y - z^2) }[/math], [math]\displaystyle{ \mathfrak{p} = (\overline{x}, \overline{z}) }[/math], and [math]\displaystyle{ \mathfrak{q} = \mathfrak{p}^2 }[/math], then [math]\displaystyle{ \mathfrak{p} }[/math] is prime and [math]\displaystyle{ \sqrt{\mathfrak{q}} = \mathfrak{p} }[/math], but we have [math]\displaystyle{ \overline{x} \overline{y} = {\overline{z}}^2 \in \mathfrak{p}^2 = \mathfrak{q} }[/math], [math]\displaystyle{ \overline{x} \not \in \mathfrak{q} }[/math], and [math]\displaystyle{ {\overline{y}}^n \not \in \mathfrak{q} }[/math] for all n > 0, so [math]\displaystyle{ \mathfrak{q} }[/math] is not primary. The primary decomposition of [math]\displaystyle{ \mathfrak{q} }[/math] is [math]\displaystyle{ (\overline{x}) \cap ({\overline{x}}^2, \overline{x} \overline{z}, \overline{y}) }[/math]; here [math]\displaystyle{ (\overline{x}) }[/math] is [math]\displaystyle{ \mathfrak{p} }[/math]-primary and [math]\displaystyle{ ({\overline{x}}^2, \overline{x} \overline{z}, \overline{y}) }[/math] is [math]\displaystyle{ (\overline{x}, \overline{y}, \overline{z}) }[/math]-primary.
- An ideal whose radical is maximal, however, is primary.
- Every ideal Q with radical P is contained in a smallest P-primary ideal: all elements a such that ax ∈ Q for some x ∉ P. The smallest P-primary ideal containing Pn is called the nth symbolic power of P.
- On the other hand, an ideal whose radical is prime is not necessarily primary: for example, if [math]\displaystyle{ R = k[x,y,z]/(x y - z^2) }[/math], [math]\displaystyle{ \mathfrak{p} = (\overline{x}, \overline{z}) }[/math], and [math]\displaystyle{ \mathfrak{q} = \mathfrak{p}^2 }[/math], then [math]\displaystyle{ \mathfrak{p} }[/math] is prime and [math]\displaystyle{ \sqrt{\mathfrak{q}} = \mathfrak{p} }[/math], but we have [math]\displaystyle{ \overline{x} \overline{y} = {\overline{z}}^2 \in \mathfrak{p}^2 = \mathfrak{q} }[/math], [math]\displaystyle{ \overline{x} \not \in \mathfrak{q} }[/math], and [math]\displaystyle{ {\overline{y}}^n \not \in \mathfrak{q} }[/math] for all n > 0, so [math]\displaystyle{ \mathfrak{q} }[/math] is not primary. The primary decomposition of [math]\displaystyle{ \mathfrak{q} }[/math] is [math]\displaystyle{ (\overline{x}) \cap ({\overline{x}}^2, \overline{x} \overline{z}, \overline{y}) }[/math]; here [math]\displaystyle{ (\overline{x}) }[/math] is [math]\displaystyle{ \mathfrak{p} }[/math]-primary and [math]\displaystyle{ ({\overline{x}}^2, \overline{x} \overline{z}, \overline{y}) }[/math] is [math]\displaystyle{ (\overline{x}, \overline{y}, \overline{z}) }[/math]-primary.
- If P is a maximal prime ideal, then any ideal containing a power of P is P-primary. Not all P-primary ideals need be powers of P, but at least they contain a power of P; for example the ideal (x, y2) is P-primary for the ideal P = (x, y) in the ring k[x, y], but is not a power of P, however it contains P².
- If A is a Noetherian ring and P a prime ideal, then the kernel of [math]\displaystyle{ A \to A_P }[/math], the map from A to the localization of A at P, is the intersection of all P-primary ideals.[4]
- A finite nonempty product of [math]\displaystyle{ \mathfrak{p} }[/math]-primary ideals is [math]\displaystyle{ \mathfrak{p} }[/math]-primary but an infinite product of [math]\displaystyle{ \mathfrak{p} }[/math]-primary ideals may not be [math]\displaystyle{ \mathfrak p }[/math]-primary; since for example, in a Noetherian local ring with maximal ideal [math]\displaystyle{ \mathfrak m }[/math], [math]\displaystyle{ \cap_{n \gt 0} \mathfrak{m}^n = 0 }[/math] (Krull intersection theorem) where each [math]\displaystyle{ \mathfrak{m}^n }[/math] is [math]\displaystyle{ \mathfrak{m} }[/math]-primary, for example the infinite product of the maximal (and hence prime and hence primary) ideal [math]\displaystyle{ m=\langle x,y \rangle }[/math] of the local ring [math]\displaystyle{ K[x,y]/\langle x^2, xy\rangle }[/math] yields the zero ideal, which in this case is not primary (because the zero divisor [math]\displaystyle{ y }[/math] is not nilpotent). In fact, in a Noetherian ring, a nonempty product of [math]\displaystyle{ \mathfrak{p} }[/math]-primary ideals [math]\displaystyle{ Q_i }[/math] is [math]\displaystyle{ \mathfrak{p} }[/math]-primary if and only if there exists some integer [math]\displaystyle{ n \gt 0 }[/math] such that [math]\displaystyle{ \mathfrak{p}^n \subset \cap_i Q_i }[/math].[5]
Footnotes
References
- Atiyah, Michael Francis; Macdonald, I.G. (1969), Introduction to Commutative Algebra, Westview Press, p. 50, ISBN 978-0-201-40751-8
- Bourbaki, Algèbre commutative
- Goldman, Oscar (1969), "Rings and modules of quotients", Journal of Algebra 13: 10–47, doi:10.1016/0021-8693(69)90004-0, ISSN 0021-8693
- Gorton, Christine; Heatherly, Henry (2006), "Generalized primary rings and ideals", Mathematica Pannonica 17 (1): 17–28, ISSN 0865-2090
- On primal ideals, Ladislas Fuchs
- Lesieur, L.; Croisot, R. (1963) (in French), Algèbre noethérienne non commutative, Mémor. Sci. Math., Fasc. CLIV. Gauthier-Villars & Cie, Editeur -Imprimeur-Libraire, Paris, pp. 119
External links
Original source: https://en.wikipedia.org/wiki/Primary ideal.
Read more |