SBI ring

From HandWiki
Revision as of 17:33, 8 February 2024 by Scavis (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In algebra, an SBI ring is a ring R (with identity) such that every idempotent of R modulo the Jacobson radical can be lifted to R. The abbreviation SBI was introduced by Irving Kaplansky and stands for "suitable for building idempotent elements".[1]

Examples

Citations

References

  • Jacobson, Nathan (1956), Structure of rings, American Mathematical Society, Colloquium Publications, 37, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-1037-8 
  • Kaplansky, Irving (1972), Fields and Rings, Chicago Lectures in Mathematics (2nd ed.), University Of Chicago Press, pp. 124–125, ISBN 0-226-42451-0