Biology:2024 in paleobotany

From HandWiki
Revision as of 08:14, 10 February 2024 by Importwiki (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This paleobotany list records new fossil plant taxa that were to be described during the year 2024, as well as notes other significant paleobotany discoveries and events which occurred during 2024.

Algae

Phycological research

  • Putative dasycladalean alga Voronocladus dryganti from the Silurian of Ukraine is argued by LoDuca (2024) to be a member of Bryopsidales; the author also reinterprets purported graptolite-like epibionts of V. dryganti, originally described as the new taxon Podoliagraptus algaeoides, as actually representing the uppermost siphons of mature thalli of V. dryganti.[1]

Ferns and fern allies

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Henanotheca qingyunensis[2]

Sp. nov

In press

Guo, Zhou & Feng in Guo et al.

Permian (Lopingian)

Xuanwei Formation

 China

A filicalean fern.

Palaeosorum siwalikum[3]

Sp. nov

Valid

Kundu, Hazra & Khan in Kundu et al.

Miocene

 India

A member of the family Polypodiaceae. Announced in 2023; the final version of the article naming it was published in 2024.

Conifers

Pinaceae

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Paranothotsuga[4]

Gen. et comb. nov

In press

Kowalski in Kowalski et al.

Oligocene to Pliocene

Cottbus Formation

 Germany

The type species is "Pseudotsuga" jechorekiae Czaja (2000).

Other conifers

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cratoxylon[5]

Gen. et sp. nov

Conceição et al.

Early Cretaceous

Crato Formation

 Brazil

A member of Pinidae of uncertain affinities. The type species is C. placidoi. The name is preoccupied by Cratoxylon Blume.

Flowering plants

Monocots

Dioscoreales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Dioscorea lindgrenii[6]

Sp. nov

In press

Herrera & Manchester

Eocene

Green River Formation

 United States
( Wyoming)

A species of Dioscorea.

Dioscorea shermanii[6]

Sp. nov

In press

Herrera & Manchester

Eocene

Green River Formation

 United States
( Wyoming)

A species of Dioscorea.

Poales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Sparganium tuberculatum[4]

Sp. nov

In press

Kowalski in Kowalski et al.

Miocene

Spremberg Formation

 Germany

A species of Sparganium.

Superasterids

Ericales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Pterosinojackia[4]

Gen. et sp. nov

In press

Kowalski in Kowalski et al.

Oligocene to Miocene

 Germany

A member of the family Styracaceae. The type species is P. lusatica.

Superrosids

Fagales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Morella stoppii[4]

Comb. nov

In press

(Kirchheimer)

Miocene

 Germany

A member of the family Myricaceae; moved from Myrica stoppii Kirchheimer (1942).

Saxifragales

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Liquidambar nanningensis[7]

Sp. nov

Xu, Zdravchev, Maslova & Jin in Xu et al.

Oligocene

Yongning Formation

 China

A species of Liquidambar.

Other angiosperms

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Magnolia germanica[4]

Comb. nov

In press

(Mai)

Oligocene to Miocene

 Germany

A species of Magnolia; moved from Manglietia germanica Mai (1971).

Nothophylica[8]

Gen. et comb. nov

Beurel et al.

Cretaceous

Burmese amber

 Myanmar

A flowering plant of uncertain affinities. Oskolski et al. (2024) interpreted it as a flowering plant with an affinity to Rhamnaceae, possibly to an extint basal lineage;[9] on the other hand Beurel et al. (2024) interpreted it as a flowering plant with probable magnoliid affinities.[8] The type species is "Phylica" piloburmensis Shi et al. (2022).

Pabiania enochii[10]

Sp. nov

Rubalcava-Knoth & Cevallos-Ferriz

Late Cretaceous

Olmos Formation

 Mexico

A member of Laurales.

  • The first fossil record of a flower of a member of the genus Cryptocarya is reported from the Miocene Zhangpu amber (China ) by Beurel et al. (2024).[11]

Other plants

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Weltrichia huitzilopochtlii[12]

Comb. nov

(Wieland)

Early Jurassic (Toarcian)

Rosario Formation

 Mexico

A member of Bennettitales. Moved from Williamsonia huitzilopochtli Wieland.

Other plant research

  • Redescription and a study on the affinities of Stauroxylon beckii is published by Durieux et al. (2024).[13]
  • Zhang et al. (2024) compile a dataset of macroscopic and cuticular traits of fossils of members of the group Czekanowskiales from China, and use it to classify the studied fossils on the basis of quantitative analytical evidence.[14]

Palynology

Palynological research

  • A study on the palynoflora from the Permian Emakwezini Formation (South Africa ) is published by Balarino et al. (2024), who interpret the studied fossils as providing evidence of the presence of complex forests during the Guadalupian, with plant diversity greater than indicated by the macrofloral record.[15]
  • The interpretation of Cycadopites and Ricciisporites proposed by Vajda et al. (2023), who considered them to represent, respectively, normal and aberrant pollen produced by the same plant with Lepidopteris ottonis foliage and Antevsia zeilleri pollen sacs,[16] is contested by Zavialova (2024).[17]
  • Evidence from pollen and spores from the Jiyuan Basin (China), interpreted as indicative of a relationship between two peaks of wildfires of different types and changes in plant communities during the Triassic-Jurassic transition, is presented by Zhang et al. (2024).[18]
  • Evidence from fossil pollen assigned to the form genus Classopollis, interpreted as indicative of existence of a refugium of members of the family Cheirolepidiaceae, is reported from the Paleocene Lower Wilcox Group (Texas , United States ) by Smith et al. (2024).[19]
  • Evidence from fossil pollen interpreted as indicative of existence of ecological corridors linking Andean, Atlantic and Amazonian regions of South America during the Last Glacial Maximum, resulting in establishment of complex connectivity patterns between plants from the studied parts of South America, is presented by Pinaya et al. (2024).[20]

References

  1. LoDuca, S. T. (2024). "Reinterpretation of Voronocladus from the Silurian of Ukraine as a bryopsidalean alga (Chlorophyta): The outlines of a major early Paleozoic macroalgal radiation begin to come into focus". Review of Palaeobotany and Palynology: 105064. doi:10.1016/j.revpalbo.2024.105064. 
  2. Guo, Y.; Zhou, Y.; Pšenička, J.; Bek, J.; Votočková Frojdová, J.; Feng, Z. (2024). "Henanotheca qingyunensis sp. nov., a filicalean fern from the Lopingian of Southwest China". Palaeontographica Abteilung B. doi:10.1127/palb/2024/0082. 
  3. Kundu, S.; Hazra, T.; Chakraborty, T.; Bera, S.; Taral, S.; Khan, M. A. (2023). "First Cenozoic macrofossil record of Polypodiaceae from India, and its biogeographic implications". International Journal of Plant Sciences 185 (1): 71–88. doi:10.1086/727457. 
  4. 4.0 4.1 4.2 4.3 4.4 Kowalski, R.; Tietz, O.; Worobiec, E.; Worobiec, G. (2024). "New floras from the Tetta Clay Pit, Upper Lusatia, late Oligocene–Early Miocene, Germany". Annales Societatis Geologorum Poloniae 94. doi:10.14241/asgp.2024.01. http://www.asgp.pl/sites/default/files/in_press_94_Kowalski_et_al.pdf. 
  5. Conceição, D. M.; Gobo, W. V.; Batista, M. E. P.; Oliveira, N. C.; Mastroberti, A. A.; Iannuzzi, R.; Bamford, M. K.; Kunzmann, L. (2024). "Expanding the diversity of conifer xyloflora from Early Cretaceous Crato Fossil Lagerstätte, Brazil". Review of Palaeobotany and Palynology: 105061. doi:10.1016/j.revpalbo.2024.105061. 
  6. 6.0 6.1 Herrera, F.; Manchester, S. R. (2024). "Earliest Dioscorea fruits (Dioscoreaceae) from North America". International Journal of Plant Sciences. doi:10.1086/729607. 
  7. Xu, S.-L.; Maslova, N.; Kodrul, T.; Zdravchev, N.; Kachkina, V.; Liu, X.-Y.; Wu, X.-K.; Jin, J.-H. (2024). "Structurally Preserved Liquidambar Infructescences, Associated Pollen, and Leaves from the Late Oligocene of the Nanning Basin, South China". Plants 13 (2): 275. doi:10.3390/plants13020275. PMID 38256828. 
  8. 8.0 8.1 Beurel, S.; Bachelier, J. B.; Schmidt, A. R.; Sadowski, E.-M. (2024). "Novel three-dimensional reconstructions of presumed Phylica (Rhamnaceae) from Cretaceous amber suggest Lauralean affinities". Nature Plants: 1–5. doi:10.1038/s41477-023-01592-w. PMID 38278948. 
  9. Oskolski, A. A.; Morris, B. B.; Severova, E. E.; Sokoloff, D. D. (2024). "Flowers from Myanmar amber confirm the Cretaceous age of Rhamnaceae but not of the extant genus Phylica". Nature Plants: 1–4. doi:10.1038/s41477-023-01591-x. PMID 38278949. 
  10. Rubalcava-Knoth, M. A.; Cevallos-Ferriz, S. R. S. (2024). "Trilobated Lauraceous leaves from the Upper Cretaceous Olmos Formation, Coahuila, Northern Mexico". Cretaceous Research: 105820. doi:10.1016/j.cretres.2023.105820. 
  11. Beurel, S.; Bachelier, J. B.; Munzinger, J.; Shao, F.; Hammel, J. U.; Shi, G.; Sadowski, E.-M. (2024). "First flower inclusion and fossil evidence of Cryptocarya (Laurales, Lauraceae) from Miocene amber of Zhangpu (China)". Fossil Record 27 (1): 1–11. doi:10.3897/fr.27.109621. 
  12. Lozano-Carmona, D. E.; Velasco-de León, M. P.; Jiménez-Rentería, J. (2024). "Reproductive organs of Early Jurassic Bennettitales from the collection of the Community Geological Museum of Rosario Nuevo "Ing. Jorge Jiménez Rentería", Oaxaca, Mexico". Paleontología Mexicana 13 (1): 17–33. http://www.ojs-igl.unam.mx/index.php/Paleontologia/article/view/705. 
  13. Durieux, T.; Decombeix, A.-L.; Harper, C.; Galtier, J. (2024). "Re-investigation of Stauroxylon beckii, a possible aneurophytalean progymnosperm from the Mississippian of France". International Journal of Plant Sciences. doi:10.1086/729412. 
  14. Zhang, B.; Xin, C.; Yang, D.; Jiao, Z.; Liu, S.; Di, G.; Zhao, H. (2024). "Numerical taxonomy and genus-species identification of Czekanowskiales in China based on machine learning". Palaeontologia Electronica 27 (1): 27.1.a10. doi:10.26879/1357. 
  15. Balarino, M. L.; Gutiérrez, P. R.; Prevec, R.; Ruffo Rey, L.; Cariglino, B. (2024). "First palynological record for the Lebombo Basin, South Africa with implications for Guadalupian (middle Permian) palaeofloras and palaeoenvironments". Gondwana Research. doi:10.1016/j.gr.2023.12.020. 
  16. Vajda, V.; McLoughlin, S.; Slater, S. M.; Gustafsson, O.; Rasmusson, A. G. (2023). "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis". Palaeogeography, Palaeoclimatology, Palaeoecology 627: 111723. doi:10.1016/j.palaeo.2023.111723. 
  17. Zavialova, N. (2024). "Comment on "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis" by V. Vajda, S. McLoughlin, S. M. Slater, O. Gustafsson, and A. G. Rasmusson [Palaeogeography, Palaeoclimatology, Palaeoecology, 627 (2023), 111,723"]. Review of Palaeobotany and Palynology 322: 105065. doi:10.1016/j.revpalbo.2024.105065. https://www.sciencedirect.com/science/article/abs/pii/S0034666724000162. 
  18. Zhang, P.; Yang, M.; Lu, J.; Jiang, Z.; Zhou, K.; Xu, X.; Wang, L.; Wu, L. et al. (2024). "Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition". Frontiers in Ecology and Evolution 12: 1329533. doi:10.3389/fevo.2024.1329533. 
  19. Smith, V.; Hessler, A.; Moscardelli, L.; Bord, D.; Olariu, I.; Lorente, M. A.; Sivil, E.; Liu, X. (2024). "A late refugium for Classopollis in the Paleocene Lower Wilcox Group along the Texas Gulf Coast". Geology. doi:10.1130/G51772.1. 
  20. Pinaya, J. L. D.; Pitman, N. C. A.; Cruz, F. W.; Akabane, T. K.; Lopez, M. del C. S.; Pereira-Filho, A. J.; Grohman, C. H.; Reis, L. S. et al. (2024). "Humid and cold forest connections in South America between the eastern Andes and the southern Atlantic coast during the LGM". Scientific Reports 14: 2080. doi:10.1038/s41598-024-51763-8. PMID 38267489.