Biology:Trypanotolerance

From HandWiki
Revision as of 13:48, 12 February 2024 by WikiEditor (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Ability to live with parasites

A trypanotolerant organism is one which is relatively less affected by trypanosome infestation.

By host

In livestock

Some breeds are known for their trypanotolerance. This is especially important in Africa where a few particular trypanosomes are major economic and agricultural pests.[1][2][3][4]

Trypanotolerant livestock breeds

  • N'Dama cattle[2]
  • West African Dwarf goats[5]:106
  • West African Dwarf sheep (Djallonké)[6]
  • Cameroon sheep

Trypanotolerance of the N'Dama Cattle and West African Dwarf Sheep and Goats

Certain domestic ruminant breeds in sub-saharan Africa show remarkable resistance to the effects of African trypanosomiasis: they can tolerate the parasites's presence while controlling parasitaemia levels and, most importantly, do not show the severe anemia and production loss that are typical of infection in susceptible breeds.[7]

The trypanotolerance trait is seen in N'Dama cattle, and it refers to the N'Dama cattle's ability to survive in areas with high tsetse fly endemicity, where other cattle breeds would frequently contract trypanosomiasis.[1] In areas or locations of low to moderate tsetse fly challenge, typanotolerant N'Dama cattle show lower numbers of parasites in their blood, develop less severe anemia and have also been shown to be more productive.[8]

An investigation to test the resistance of different small ruminant breeds (West African dwarf sheep and goats) to an artificial infection with T. congolense revealed that native sheep and goats had a higher natural resistance to the illness than exotic breeds, with exotic/indigenous crossbreeds falling somewhere in between.[9] Despite persistent parasitaemia, clinical signs in trypanotolerant West African dwarf sheep and goats revealed a milder illness with lower mortality. [9] The significance of these trypanotolerant traits is highlighted when choosing breeds of sheep and goats for selection programs. Some literature claims that trypanotolerance in small ruminants (sheep and goats) should be viewed as resilience rather than resistance because it is less apparent than in cattle.[10]

Trypanotolerance appears to include both non-immunological and immunological pathways and is most likely multifactorial.[11] However, physiological and nutritional factors, concurrent diseases, the presence and absence of tsetse, and inter-current diseases all have an impact on the level of resistance displayed by typanotolerant breeds of cattle, sheep, and goats.[7]

In addition to the above-listed criteria, studies have shown that the effective dose of the trypanosome parasite that these animals acquire following the bite of the tsetse fly is also a consideration. It only takes one fly bite to transmit the infection. [11] The quantity of trypanosomes injected into an animal's skin as a result of bites determines how severe the sickness will be; thus, trypanotolerance during natural exposure may be influenced by lower infective dosages.[7] The finding that some cattle that are highly resistant in the field don't always retain that level of resistance after being artificially infected with a specific dose of the parasite may be supportive of this hypothesis.[12]

History of genetic research

Trypanotolerance had previously been achieved through normal livestock breeding in cattle, but genetic analysis was becoming a serious option in the 1980s. The effort that would eventually bear fruit began with a conversation between Peter Brumby - then at the International Livestock Centre for Africa - and Morris Soller in 1985. This was followed by the opening of the shortlived International Trypanotolerance Center in the Gambia in 1987 with a seminar on the genome mapping project that would continue beyond the Center itself. The project was then actually completed by the ILRI - the successor to the ILCA - in 2003.[13]

References

  1. 1.0 1.1 d'Ieteren, G.; Authie, E.; Wissocq, N.; Murray, M. (1998). "Trypanotolerance, an option for sustainable livestock production in areas at risk from trypanosomosis". Revue Scientifique et Technique de l'OIE (O.I.E (World Organisation for Animal Health)) 17 (1): 154–175. doi:10.20506/rst.17.1.1088. ISSN 0253-1933. PMID 9638808. 
  2. 2.0 2.1 Kim, Soo-Jin; Ka, Sojeong; Ha, Jung-Woo; Kim, Jaemin; Yoo, DongAhn; Kim, Kwondo; Lee, Hak-Kyo; Lim, Dajeong et al. (2017-05-12). "Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N'Dama". BMC Genomics (BioMed Central) 18 (1): 371. doi:10.1186/s12864-017-3742-2. ISSN 1471-2164. PMID 28499406. 
  3. "Trypanotolerant livestock in the context of trypanosomiasis intervention strategies". http://www.fao.org/3/y5832e/y5832e05.htm. 
  4. "Trypanotolerance in West African cattle". http://www.cirad.fr/en/our-research/research-results/2011/trypanotolerance-in-west-african-cattle. 
  5. R. T. Wilson (1991). Small Ruminant Production and the Small Ruminant Genetic Resource in Tropical Africa. Rome: United Nations Food and Agriculture Organization. ISBN 9789251029985. https://books.google.com/books?id=VKCtxBeL5ScC&pg=PA106. 
  6. Mawuena, K. (1987). "Haut degré de tolérance à la trypanosomose des moutons et des chèvres de race naine Djallonké des régions Sud-guinéennes du Togo. Comparaison avec les bovins trypanotolérants". Revue d'élevage et de médecine vétérinaire des pays tropicaux 40 (1): 55–58. doi:10.19182/REMVT.8696. PMID 3444966. https://revues.cirad.fr/index.php/REMVT/article/view/8696. 
  7. 7.0 7.1 7.2 Authié, E. (1994). "Trypanosomiasis and trypanotolerance in cattle: A role for congopain?" (in en). Parasitology Today 10 (9): 360–364. doi:10.1016/0169-4758(94)90252-6. ISSN 0169-4758. PMID 15275419. 
  8. Kemp, S.; Teale, A. (1998). "Genetic Basis of Trypanotolerance in Cattle and Mice". Parasitology Today (Elsevier) 14 (11): 450–454. doi:10.1016/s0169-4758(98)01334-9. ISSN 0169-4758. PMID 17040846. 
  9. 9.0 9.1
  10. Geerts, Stanny; Osaer, Sabine; Goossens, Bart; Faye, Déthié (2009). "Trypanotolerance in small ruminants of sub-Saharan Africa" (in en). Trends in Parasitology (Cell Press) 25 (3): 132–138. doi:10.1016/j.pt.2008.12.004. PMID 19200783. 
  11. 11.0 11.1 Duvallet, Gérard (2017). "Chapitre 1. Arthropodologie générale". Entomologie médicale et vétérinaire. IRD Éditions. pp. 19–35. doi:10.4000/books.irdeditions.21962. ISBN 9782709923767. 
  12. Chow, Y. W.; Pietranico, R.; Mukerji, A. (1975-10-27). "Studies of oxygen binding energy to hemoglobin molecule". Biochemical and Biophysical Research Communications 66 (4): 1424–1431. doi:10.1016/0006-291x(75)90518-5. ISSN 0006-291X. PMID 6. https://pubmed.ncbi.nlm.nih.gov/6. 
  13. Soller, Morris (2015-02-16). "If a Bull Were a Cow, How Much Milk Would He Give?". Annual Review of Animal Biosciences (Annual Reviews) 3 (1): 1–17. doi:10.1146/annurev-animal-022114-110751. ISSN 2165-8102. PMID 25493539.