Biology:Erysimum cheiranthoides

From HandWiki
Revision as of 12:16, 13 February 2024 by MainAI5 (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Species of flowering plant

Erysimum cheiranthoides
Gewone steenraket bloemen.jpg
Scientific classification edit
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Brassicales
Family: Brassicaceae
Genus: Erysimum
Species:
E. cheiranthoides
Binomial name
Erysimum cheiranthoides
Synonyms

Cheirinia cheiranthoides

Erysimum cheiranthoides, the treacle-mustard, wormseed wallflower, or wormseed mustard is a species of Erysimum native to most of central and northern Europe and northern and central Asia.[1][2][3][4] Like other Erysimum species, E. cheiranthoides accumulates two major classes of defensive chemicals: glucosinolates and cardiac glycosides.

Description

It is a herbaceous, annual plant similar in appearance to many other mustards, growing an erect stem 15–100 cm (5.9–39.4 in),[5] (rarely 150 cm) tall.[6] The leaves are lanceolate to elliptic, 2–11 cm long and 0.5–1 cm broad, with an entire to coarsely toothed margin. It blooms in summer, between June and August.[5][7] The flowers are bright yellow, 5–12 mm diameter, and produced in an erect inflorescence. Later, it produces a slender cylindrical capsule, 1–3 cm (rarely 5 cm) long, containing several small, pale brown [5] or dark brown seeds.[2][3][8]

Taxonomy

It was formerly described by the Swedish botanist Carl Linnaeus in his seminal publication 'Species Plantarum' in 1753, on page 661.[9][10]

It is commonly known as treacle-mustard,[5] or wormseed wallflower.[7][6] The treacle mustard name came from the Greek word 'theriaki' meaning antidote to poisonous bites as the plant was thought to have healing properties. The name 'wormseed mustard' arose from the seeds of the plant being made into treacle, to treat intestinal worms in children.[5]

Distribution

Erysimum cheiranthoides

Erysimum cheiranthoides is native to temperate areas of Europe and Asia.[4]

Range

It is found in Asia within China (in the provinces of Heilongjiang, Jilin, Nei Monggol and Xinjiang), Japan , Korea, Mongolia and Siberia. In Eastern Europe, it is found in Belarus , Estonia, Latvia, Lithuania, Moldova and Ukraine . In middle Europe, it is found within Austria, Belgium, the Czech Republic, Germany , Hungary, the Netherlands, Poland , Slovakia and Switzerland . In Northern Europe, in Denmark , Finland , Norway , Sweden and the United Kingdom . In Southeastern Europe, within Bosnia and Herzegovina, Bulgaria, Croatia, France , Romania, Serbia and Slovenia.[1][2][3][4]

It is also widely naturalised outside of its native range,[8][11] from New Zealand, other parts of Europe,[4] to North America[12] (including parts of Canada ), and Argentina (in Tierra del Fuego).[4]

Habitat

It grows in disturbed areas, fields,[7] and dry stream beds.[6] It is normally found at altitudes of 0–3,000 m (0–9,843 ft) above sea level.[6]

Chemical ecology

Like other members of the genus Erysimum, E. cheiranthoides produces two major classes of chemical defenses against herbivory: glucosinolates, which are characteristic of the plant family Brassicaceae,[13] and cardiac glycosides (cardenolides), a class of chemicals produced by at least twelve different plant families.[14][15] Glucosinolates found in E. cheiranthoides include glucoiberin, glucoerucin, glucocheirolin, and glucoiberverin.[16][17] Cardenolides reported in E. cheiranthoides seeds include strophanthidin, digitoxigenin, cannogenol, erychroside, erysimoside, erycordin, cheiranthoside, glucoerysimoside, and glucodigifucoside.[18][19][20][21][22][23] Grafting experiments and genetic crosses indicate that cardenolides are produced in the leaves of E. cheiranthoides and are transported to other parts of the plant.[24]

Some crucifer-specialist insect herbivores do not feed and/or oviposit readily on E. cheiranthoides. Anthocharis cardamines (orange tip butterfly), which oviposits on almost all crucifer species, avoids E. cheiranthoides.[25] Similarly, the crucifer-feeding specialist Pieries rapae (white cabbage butterfly) is deterred from feeding and oviposition on E. cheiranthoides.[26][27][28][29][30] However, another pierid species, Pieris napi oleracea (green veined white butterfly), not only is less sensitive to exogenously added cardenolides than P. rapae in oviposition assays, but also oviposits more readily on E. cheiranthoides leaves.[31][32]

In the case of P. rapae, oviposition experiments with extracts of E. cheiranthoides sprayed onto Brassica oleracea (cabbage) identified both attractants and deterrents.[27][28] Whereas 3-methylsulfinylpropyl glucosinolate and 3-methylsufonylpropyl glucosinolate stimulated oviposition,[29][32] erysimoside and erychroside in E. cheiranthoides extracts were deterrent.[30][33] In contrast, another cardiac glycoside, erycordin, was inactive in this oviposition assay. Pieris rapae tarsal sensilla respond to both glucosinolates and cardenolides, indicating that these compounds are detected on the leaf surface prior to oviposition.[34] Consistent with the deterrent effects on oviposition, cardenolides from E. cheiranthoides leaf extracts also served as feeding deterrents for P. rapae caterpillars.[30][29]

Predatory paper wasps (Polistes dominulus) required more time to consume Pieris napi (green-veined white) caterpillars that had fed on E. cheiranthoides than those that had fed on Brassica oleracea (cabbage).[35] This was ascribed to the time that it took the wasps to selectively remove the caterpillar guts, which contained plant material.

Use as a model organism

Erysimum cheiranthoides variety Elbtalaue in a growth chamber

Because Erysimum is in the family Brassicaceae, it has been proposed that many of the genetic resources that already exist for Arabidopsis thaliana (an extensively studied model organism) can be used with Erysimum to aide in genetic analysis, making this genus particularly attractive for studying the cardenolide biosynthetic pathway.[36][37] E. cheiranthoides itself is diploid and has a relatively small genome (~200 Mbp across 8 chromosomes), can be grown from seed to seed production as fast as 10 weeks, and performs well in a laboratory setting.[37][38] The genome of E. cheiranthoides variety Elbtalaue has been sequenced.[39][40] As E. cheiranthoides has many genetic similarities to A. thaliana, it is likely that techniques for genetically modifying A. thaliana and related research methods will also work for E. cheiranthoides.[37] Mutated isolates of E. cheiranthoides with altered cardiac glycoside content have been identified.[41]

Medicinal uses

Cardiac glycosides, which are abundant in E. cheiranthoides, have been used for treating heart disease and other ailments in traditional and modern medicine.[42][43][44][45][46][47] However, E. cheiranthoides is not a commonly used source of these compounds. Nevertheless, E. cheiranthoides has been used as an herbal remedy in traditional Chinese medicine.[48] European herbalists in the 16th century, used the plant as a remedy for insect and animal bites.[5] The common name wormseed wallflower comes from the use of E. cheiranthoides in treating intestinal worms.[5]

References

  1. 1.0 1.1 Flora Europaea: Erysimum cheiranthoides
  2. 2.0 2.1 2.2 Blamey, M. & Grey-Wilson, C. (1989). Flora of Britain and Northern Europe. ISBN:0-340-40170-2
  3. 3.0 3.1 3.2 Flora of China: Erysimum cheiranthoides
  4. 4.0 4.1 4.2 4.3 4.4 "Taxon: Erysimum cheiranthoides L.". ars-grin.gov. https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=105478. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Reader's Digest Field Guide to the Wild Flowers of Britain. Reader's Digest. 1981. p. 47. ISBN 9780276002175. 
  6. 6.0 6.1 6.2 6.3 "FNA Vol. 7 Page 535, 539". efloras.org. http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=200009522. 
  7. 7.0 7.1 7.2 "Erysimum cheiranthoides (Wormseed Wallflower)". minnesotawildflowers.info. https://www.minnesotawildflowers.info/flower/wormseed-wallflower. 
  8. 8.0 8.1 Flora of NW Europe: Erysimum cheiranthoides[yes|permanent dead link|dead link}}]
  9. "Erysimum cheiranthoides L. is an accepted name". theplantlist.org. http://www.theplantlist.org/tpl1.1/record/kew-2799902. 
  10. "Brassicaceae Erysimum cheiranthoides L.". ipni.org. http://www.ipni.org/ipni/idPlantNameSearch.do?id=307231-2. 
  11. Med-Checklist: Erysimum cheiranthoides
  12. USDA Plants Profile: Erysimum cheiranthoides
  13. Fahey, Jed W.; Zalcmann, Amy T.; Talalay, Paul (2001). "The chemical diversity and distribution of glucosinolates and isothiocyanates among plants". Phytochemistry 56 (1): 5–51. doi:10.1016/S0031-9422(00)00316-2. ISSN 0031-9422. PMID 11198818. 
  14. Agrawal, Anurag A.; Petschenka, Georg; Bingham, Robin A.; Weber, Marjorie G.; Rasmann, Sergio (2012). "Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions". New Phytologist 194 (1): 28–45. doi:10.1111/j.1469-8137.2011.04049.x. ISSN 0028-646X. PMID 22292897. 
  15. Melero, Concepción; Medarde, Manuel; San Feliciano, Arturo (2000-01-21). "A Short Review on Cardiotonic Steroids and Their Aminoguanidine Analogues". Molecules 5 (12): 51–81. doi:10.3390/50100051. ISSN 1420-3049. 
  16. Cole, Rosemary A. (1976). "Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae". Phytochemistry 15 (5): 759–762. doi:10.1016/S0031-9422(00)94437-6. ISSN 0031-9422. 
  17. Hugentobler, U.; Renwick, J. A. A. (1995). "Effects of plant nutrition on the balance of insect relevant cardenolides and glucosinolates in Erysimum cheiranthoides". Oecologia 102 (1): 95–101. doi:10.1007/bf00333315. ISSN 0029-8549. PMID 28306812. Bibcode1995Oecol.102...95H. 
  18. Makarevich, I. F.; Kolesnikov, D. G. (1965). "Cardenolides of the seeds ofErysimum cheiranthoides L." (in en). Chemistry of Natural Compounds 1 (5): 286–287. doi:10.1007/BF00563707. ISSN 1573-8388. 
  19. Zhen-Huan Lei; Yahara, Shoji; Nohara, Toshihiro; Tai-Bao Shan; Jin-Zhe Xiong (1996). "Cardenolides from Erysimum cheiranthoides". Phytochemistry 41 (4): 1187–1189. doi:10.1016/0031-9422(95)00764-4. ISSN 0031-9422. PMID 8728718. 
  20. Lei, Zhen-Huan; Jin, Zhe-Xion; Ma, Ying-Li; Tai, Bao-Shan; Kong, Qi; Yahara, Shoji; Nohara, Toshihiro (1998). "Cardiac glycosides from erysimum cheiranthoides". Phytochemistry 49 (6): 1801–1803. doi:10.1016/S0031-9422(98)00264-7. ISSN 0031-9422. PMID 11711105. 
  21. Lei, Zhen-Huan; Yahara, Shoji; Nohara, Toshihiro; Tai, Bao-Shan; Xiong, Jin-Zhe; Ma, Ying-Li (2000). "Cardiac Glycosides form Erysimum cheiranthoides" (in en). Chemical and Pharmaceutical Bulletin 48 (2): 290–292. doi:10.1248/cpb.48.290. ISSN 0009-2363. PMID 10705523. 
  22. Lei, Zhen-Huan; Kuniyasu, Akihiko; Tai, Bao-Shin; Nakayama, Hitoshi; Nohara, Toshihiro (2001). "Na+,K+-ATPase Inhibiting Activity of Cardiac Glycosides from Erysimum cheiranthoides". Planta Medica 67 (4): 369–370. doi:10.1055/s-2001-14309. ISSN 0032-0943. PMID 11458460. 
  23. Lei, Zhen-Huan; Nakayama, Hitoshi; Kuniyasu, Akihiko; Tai, Bao-Shan; Nohara, Toshihiro (2002). "Cardiac Glycosides from Erysimum cheiranthoides" (in en). Chemical and Pharmaceutical Bulletin 50 (6): 861–862. doi:10.1248/cpb.50.861. ISSN 0009-2363. PMID 12045350. 
  24. Alani, Martin L.; Younkin, Gordon C.; Mirzaei, Mahdieh; Kumar, Pavan; Jander, Georg (October 2, 2021). "Acropetal and basipetal cardenolide transport in Erysimum cheiranthoides (wormseed wallflower)" (in en). Phytochemistry 192: 112965. doi:10.1016/j.phytochem.2021.112965. PMID 34610557. 
  25. Wiklund, Christer; Åhrberg, Carl; Ahrberg, Carl (1978). "Host Plants, Nectar Source Plants, and Habitat Selection of Males and Females of Anthocharis cardamines (Lepidoptera)". Oikos 31 (2): 169. doi:10.2307/3543560. ISSN 0030-1299. 
  26. Feeny, Paul (1977). "Defensive Ecology of the Cruciferae". Annals of the Missouri Botanical Garden 64 (2): 221–234. doi:10.2307/2395334. https://www.biodiversitylibrary.org/part/40250. 
  27. 27.0 27.1 Renwick, J. A. A.; Radke, Celia D. (1987). "Chemical stimulants and deterrents regulating acceptance or rejection of crucifers by cabbage butterflies". Journal of Chemical Ecology 13 (7): 1771–1776. doi:10.1007/bf00980217. ISSN 0098-0331. PMID 24302344. 
  28. 28.0 28.1 Renwick, J. A. A.; Radke, Celia D. (1985). "Constituents of host- and non-host plants deterring oviposition by the cabbage butterfly, Pieris rapae". Entomologia Experimentalis et Applicata 39 (1): 21–26. doi:10.1111/j.1570-7458.1985.tb03538.x. ISSN 0013-8703. 
  29. 29.0 29.1 29.2 Dimock, M. B.; Renwick, J. A. A.; Radke, C. D.; Sachdev-gupta, K. (1991). "Chemical constituents of an unacceptable crucifer,Erysimum cheiranthoides, deter feeding byPieris rapae". Journal of Chemical Ecology 17 (3): 525–533. doi:10.1007/bf00982123. ISSN 0098-0331. PMID 24258803. 
  30. 30.0 30.1 30.2 Sachdev-Gupta, K.; Radke, Cd.; Renwick, J. A. A.; Dimock, M. B. (1993). "Cardenolides fromErysimum cheiranthoides: Feeding deterrents toPieris rapae larvae". Journal of Chemical Ecology 19 (7): 1355–1369. doi:10.1007/bf00984881. ISSN 0098-0331. PMID 24249167. 
  31. Huang, Xinpei; Renwick, J. A. A.; Sachdev-Gupta, K. (1993). "A chemical basis for differential acceptance ofErysimum cheiranthoides by twoPieris species". Journal of Chemical Ecology 19 (2): 195–210. doi:10.1007/bf00993689. ISSN 0098-0331. PMID 24248868. 
  32. 32.0 32.1 Huang, Xinpei; Renwick, J. A. A. (1993). "Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents". Entomologia Experimentalis et Applicata 68 (1): 59–69. doi:10.1111/j.1570-7458.1993.tb01689.x. ISSN 0013-8703. 
  33. Renwick, J. A. A.; Radke, C. D.; Sachdev-Gupta, K. (1989). "Chemical constituents ofErysimum cheiranthoides deterring oviposition by the cabbage butterfly,Pieris rapae". Journal of Chemical Ecology 15 (8): 2161–2169. doi:10.1007/bf01014106. ISSN 0098-0331. PMID 24272377. 
  34. STÄDLER, ERICH; RENWICK, J. A. A.; RADKE, CELIA D.; SACHDEV-GUPTA, KUSUM (1995). "Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rape". Physiological Entomology 20 (2): 175–187. doi:10.1111/j.1365-3032.1995.tb00814.x. ISSN 0307-6962. 
  35. Rayor, Linda S.; Mooney, Larissa J.; Renwick, J. Alan (2007). "Predatory Behavior of Polistes dominulus Wasps in Response to Cardenolides and Glucosinolates in Pieris napi Caterpillars". Journal of Chemical Ecology 33 (6): 1177–1185. doi:10.1007/s10886-007-9283-4. ISSN 0098-0331. PMID 17453324. 
  36. Munkert, Jennifer; Bauer, Peter; Burda, Edyta; Müller-Uri, Frieder; Kreis, Wolfgang (2011). "Progesterone 5β-reductase of Erysimum crepidifolium: cDNA cloning, expression in Escherichia coli, and reduction of enones with the recombinant protein" (in en). Phytochemistry 72 (14–15): 1710–1717. doi:10.1016/j.phytochem.2011.06.007. PMID 21767854. 
  37. 37.0 37.1 37.2 Züst, Tobias; Mirzaei, Mahdieh; Jander, Georg (2018). "Erysimum cheiranthoides, an ecological research system with potential as a genetic and genomic model for studying cardiac glycoside biosynthesis". Phytochemistry Reviews 17 (6): 1239. doi:10.1007/s11101-018-9562-4. https://boris.unibe.ch/114835/. 
  38. Bainard, Jillian D.; Bainard, Luke D.; Henry, Thomas A.; Fazekas, Aron J.; Newmaster, Steven G. (2012). "A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits". New Phytologist 196 (4): 1240–50. doi:10.1111/j.1469-8137.2012.04370.x. PMID 23078229. 
  39. "Erysimum Genome Site". September 17, 2019. https://www.erysimum.org/. 
  40. Züst, Tobias; Strickler, Susan R; Powell, Adrian F; Mabry, Makenzie E; An, Hong; Mirzaei, Mahdieh; York, Thomas; Holland, Cynthia K et al. (2020-04-07). "Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae)" (in en). eLife 9: e51712. doi:10.7554/eLife.51712. ISSN 2050-084X. PMID 32252891. 
  41. Mirzaei, Mahdieh; Züst, Tobias; Younkin, Gordon C.; Hastings, Amy P.; Alani, Martin L.; Agrawal, Anurag A.; Jander, Georg (2020). "Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores" (in en). Journal of Chemical Ecology 46 (11–12): 1131–1143. doi:10.1007/s10886-020-01225-y. ISSN 0098-0331. PMID 33180277. http://link.springer.com/10.1007/s10886-020-01225-y. 
  42. Withering, William (2014), "AN ACCOUNT OF THE INTRODUCTION of FOXGLOVE INTO MODERN PRACTICE", An Account of the Foxglove, and Some of Its Medical Uses, Cambridge University Press, pp. 1–10, doi:10.1017/cbo9781107706132.004, ISBN 9781107706132 
  43. Fürst, Robert; Zündorf, Ilse; Dingermann, Theo (2017). "New Knowledge About Old Drugs: The Anti-Inflammatory Properties of Cardiac Glycosides". Planta Medica 83 (12/13): 977–984. doi:10.1055/s-0043-105390. ISSN 0032-0943. PMID 28297727. 
  44. Gurel, Ekrem; Karvar, Serhan; Yucesan, Buhara; Eker, Ismail; Sameeullah, Muhammad (2018). "An Overview of Cardenolides in Digitalis - More Than a Cardiotonic Compound". Current Pharmaceutical Design 23 (34): 5104–5114. doi:10.2174/1381612823666170825125426. ISSN 1381-6128. PMID 28847302. 
  45. Kreis, Wolfgang (2017). "The Foxgloves (Digitalis) Revisited". Planta Medica 83 (12/13): 962–976. doi:10.1055/s-0043-111240. ISSN 0032-0943. PMID 28561136. 
  46. Schneider, Naira; Cerella, Claudia; Simões, Cláudia Maria Oliveira; Diederich, Marc (2017). "Anticancer and Immunogenic Properties of Cardiac Glycosides". Molecules 22 (11): 1932. doi:10.3390/molecules22111932. ISSN 1420-3049. PMID 29117117. 
  47. Patel, Seema (2016). "Plant-derived cardiac glycosides: Role in heart ailments and cancer management". Biomedicine & Pharmacotherapy 84: 1036–1041. doi:10.1016/j.biopha.2016.10.030. ISSN 0753-3322. PMID 27780131. 
  48. Zhu, YC (1989). Plantae medicinales Chinae boreali-orientalis. Harbin: Heilongjiang Science and Technology Publishing House. 

External links

Wikidata ☰ Q158313 entry