Metric map
In the mathematical theory of metric spaces, a metric map is a function between metric spaces that does not increase any distance. These maps are the morphisms in the category of metric spaces, Met.[1] Such functions are always continuous functions. They are also called Lipschitz functions with Lipschitz constant 1, nonexpansive maps, nonexpanding maps, weak contractions, or short maps.
Specifically, suppose that [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are metric spaces and [math]\displaystyle{ f }[/math] is a function from [math]\displaystyle{ X }[/math] to [math]\displaystyle{ Y }[/math]. Thus we have a metric map when, for any points [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] in [math]\displaystyle{ X }[/math], [math]\displaystyle{ d_{Y}(f(x),f(y)) \leq d_{X}(x,y) . \! }[/math] Here [math]\displaystyle{ d_X }[/math] and [math]\displaystyle{ d_Y }[/math] denote the metrics on [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] respectively.
Examples
Consider the metric space [math]\displaystyle{ [0,1/2] }[/math] with the Euclidean metric. Then the function [math]\displaystyle{ f(x)=x^2 }[/math] is a metric map, since for [math]\displaystyle{ x\ne y }[/math], [math]\displaystyle{ |f(x)-f(y)|=|x+y||x-y|\lt |x-y| }[/math].
Category of metric maps
The function composition of two metric maps is another metric map, and the identity map [math]\displaystyle{ \mathrm{id}_M : M \rightarrow M }[/math] on a metric space [math]\displaystyle{ M }[/math] is a metric map, which is also the identity element for function composition. Thus metric spaces together with metric maps form a category Met. Met is a subcategory of the category of metric spaces and Lipschitz functions. A map between metric spaces is an isometry if and only if it is a bijective metric map whose inverse is also a metric map. Thus the isomorphisms in Met are precisely the isometries.
Strictly metric maps
One can say that [math]\displaystyle{ f }[/math] is strictly metric if the inequality is strict for every two different points. Thus a contraction mapping is strictly metric, but not necessarily the other way around. Note that an isometry is never strictly metric, except in the degenerate case of the empty space or a single-point space.
Multivalued version
A mapping [math]\displaystyle{ T:X\to \mathcal{N}(X) }[/math] from a metric space [math]\displaystyle{ X }[/math] to the family of nonempty subsets of [math]\displaystyle{ X }[/math] is said to be Lipschitz if there exists [math]\displaystyle{ L\geq 0 }[/math] such that [math]\displaystyle{ H(Tx,Ty)\leq L d(x,y), }[/math] for all [math]\displaystyle{ x,y\in X }[/math], where [math]\displaystyle{ H }[/math] is the Hausdorff distance. When [math]\displaystyle{ L=1 }[/math], [math]\displaystyle{ T }[/math] is called nonexpansive and when [math]\displaystyle{ L\lt 1 }[/math], [math]\displaystyle{ T }[/math] is called a contraction.
See also
- Contraction (operator theory) – Bounded operators with sub-unit norm
- Contraction mapping – Function reducing distance between all points
- Stretch factor – Mathematical parameter of embeddings
References
- ↑ "Six theorems about injective metric spaces". Comment. Math. Helv. 39: 65–76. 1964. doi:10.1007/BF02566944. http://www.digizeitschriften.de/resolveppn/GDZPPN002058340.
Original source: https://en.wikipedia.org/wiki/Metric map.
Read more |