List of perfect numbers
The following is a list of the known perfect numbers, and the exponents p that can be used to generate them (using the expression 2p−1× (2p − 1)) whenever 2p − 1 is a Mersenne prime. All even perfect numbers are of this form. It is not known whether there are any odd perfect numbers.[1] (As of 2019) there are 51 known perfect numbers in total.[2][3][4] For even perfect numbers, the ratio p / digits approaches log(10) / log(4) = 1.6609640474...
Rank | p | Perfect number | Digits | Year | Discoverer |
---|---|---|---|---|---|
1 | 2 | 6 | 1 | 4th century B.C.[5] | Euclid |
2 | 3 | 28 | 2 | 4th century B.C. | Euclid |
3 | 5 | 496 | 3 | 4th century B.C. | Euclid |
4 | 7 | 8128 | 4 | 4th century B.C. | Euclid |
6 | 17 | 8589869056 | 10 | 1588 | Cataldi[1] |
7 | 19 | 137438691328 | 12 | 1588 | Cataldi[1] |
8 | 31 | 2305843008139952128 | 19 | 1772 | Euler |
9 | 61 | 265845599156...615953842176 | 37 | 1883 | Pervushin |
10 | 89 | 191561942608...321548169216 | 54 | 1911 | Powers |
11 | 107 | 131640364585...117783728128 | 65 | 1914 | Powers |
12 | 127 | 144740111546...131199152128 | 77 | 1876 | Lucas |
13 | 521 | 235627234572...160555646976 | 314 | 1952 | Robinson |
14 | 607 | 141053783706...759537328128 | 366 | 1952 | Robinson |
15 | 1,279 | 541625262843...764984291328 | 770 | 1952 | Robinson |
16 | 2,203 | 108925835505...834453782528 | 1,327 | 1952 | Robinson |
17 | 2,281 | 994970543370...675139915776 | 1,373 | 1952 | Robinson |
18 | 3,217 | 335708321319...332628525056 | 1,937 | 1957 | Riesel |
19 | 4,253 | 182017490401...437133377536 | 2,561 | 1961 | Hurwitz |
20 | 4,423 | 407672717110...642912534528 | 2,663 | 1961 | Hurwitz |
21 | 9,689 | 114347317530...558429577216 | 5,834 | 1963 | Gillies |
22 | 9,941 | 598885496387...324073496576 | 5,985 | 1963 | Gillies |
23 | 11,213 | 395961321281...702691086336 | 6,751 | 1963 | Gillies |
24 | 19,937 | 931144559095...790271942656 | 12,003 | 1971 | Tuckerman |
25 | 21,701 | 100656497054...255141605376 | 13,066 | 1978 | Noll & Nickel |
26 | 23,209 | 811537765823...603941666816 | 13,973 | 1979 | Noll |
27 | 44,497 | 365093519915...353031827456 | 26,790 | 1979 | Nelson & Slowinski |
28 | 86,243 | 144145836177...957360406528 | 51,924 | 1982 | Slowinski |
29 | 110,503 | 136204582133...233603862528 | 66,530 | 1988 | Colquitt & Welsh |
30 | 132,049 | 131451295454...491774550016 | 79,502 | 1983 | Slowinski |
31 | 216,091 | 278327459220...416840880128 | 130,100 | 1985 | Slowinski |
32 | 756,839 | 151616570220...600565731328 | 455,663 | 1992 | Slowinski & Gage |
33 | 859,433 | 838488226750...540416167936 | 517,430 | 1994 | Slowinski & Gage |
34 | 1,257,787 | 849732889343...028118704128 | 757,263 | 1996 | Slowinski & Gage |
35 | 1,398,269 | 331882354881...017723375616 | 841,842 | 1996 | Armengaud, Woltman, et al. |
36 | 2,976,221 | 194276425328...724174462976 | 1,791,864 | 1997 | Spence, Woltman, et al. |
37 | 3,021,377 | 811686848628...573022457856 | 1,819,050 | 1998 | Clarkson, Woltman, Kurowski, et al. |
38 | 6,972,593 | 955176030521...475123572736 | 4,197,919 | 1999 | Hajratwala, Woltman, Kurowski, et al. |
39 | 13,466,917 | 427764159021...460863021056 | 8,107,892 | 2001 | Cameron, Woltman, Kurowski, et al. |
40 | 20,996,011 | 793508909365...578206896128 | 12,640,858 | 2003 | Shafer, Woltman, Kurowski, et al. |
41 | 24,036,583 | 448233026179...460572950528 | 14,471,465 | 2004 | Findley, Woltman, Kurowski, et al. |
42 | 25,964,951 | 746209841900...874791088128 | 15,632,458 | 2005 | Nowak, Woltman, Kurowski, et al. |
43 | 30,402,457 | 497437765459...536164704256 | 18,304,103 | 2005 | Cooper, Boone, Woltman, Kurowski, et al. |
44 | 32,582,657 | 775946855336...476577120256 | 19,616,714 | 2006 | Cooper, Boone, Woltman, Kurowski, et al. |
45 | 37,156,667 | 204534225534...975074480128 | 22,370,543 | 2008 | Elvenich, Woltman, Kurowski, et al. |
46 | 42,643,801 | 144285057960...837377253376 | 25,674,127 | 2009 | Strindmo, Woltman, Kurowski, et al. |
47 | 43,112,609 | 500767156849...221145378816 | 25,956,377 | 2008 | Smith, Woltman, Kurowski, et al. |
48 | 57,885,161 | 169296395301...626270130176 | 34,850,340 | 2013 | Cooper, Woltman, Kurowski, et al. |
49 | 74,207,281 | 451129962706...557930315776 | 44,677,235 | 2016 | Cooper, Woltman, Kurowski, Blosser, et al. |
50 | 77,232,917 | 109200152134...402016301056 | 46,498,850 | 2017 | Pace, Woltman, Kurowski, Blosser, et al. |
51 | 82,589,933 | 110847779864...007191207936 | 49,724,095 | 2018 | Laroche, Woltman, Kurowski, Blosser, et al. |
The displayed ranks are among those perfect numbers which are known (As of December 2018). Some ranks may change later if smaller perfect numbers are discovered. It is known there is no odd perfect number below 101500 ≈ 24983.[6] GIMPS reported that by 8 April 2018 the search for Mersenne primes (and thereby even perfect numbers) became exhaustive up to the 47th above.[7]
References
- ↑ 1.0 1.1 1.2 Crilly, Tony (2007). 50 mathematical ideas you really need to know. Quercus Publishing. p. 43. ISBN 978-1-84724-008-8.
- ↑ Munch Pedersen, Jan (11 Sep 2006). "Known Perfect Numbers". http://amicable.homepage.dk/perfect.htm.
- ↑ "Perfect Numbers". MIT. http://web.mit.edu/adorai/www/perfectnumbers.html.
- ↑ Chris Caldwell, "Mersenne Primes: History, Theorems and Lists" at The Prime Pages. Retrieved 2018-01-03.
- ↑ The Penguin's Dictionary of curious and interesting numbers
- ↑ Ochem, Pascal; Rao, Michael, "Odd Perfect Numbers Are Greater Than 10^1500", MATHEMATICS OF COMPUTATION, Volume 81, Number 279, July 2012, Pages 1869–1877. S 0025-5718(2012)02563-4. Article electronically published on January 30, 2012
- ↑ "GIMPS Milestones Report". Retrieved 2018-08-04.
External links