Square-free element
From HandWiki
Revision as of 08:33, 8 April 2020 by imported>SpringEdit (cleaning)
In mathematics, a square-free element is an element r of a unique factorization domain R that is not divisible by a non-trivial square. This means that every s such that [math]\displaystyle{ s^2\mid r }[/math] is a unit of R.
Alternate characterizations
Square-free elements may be also characterized using their prime decomposition. The unique factorization property means that a non-zero non-unit r can be represented as a product of prime elements
- [math]\displaystyle{ r=p_1p_2\cdots p_n }[/math]
Then r is square-free if and only if the primes pi are pairwise non-associated (i.e. that it doesn't have two of the same prime as factors, which would make it divisible by a square number).
Examples
Common examples of square-free elements include square-free integers and square-free polynomials.
See also
References
- David Darling (2004) The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes John Wiley & Sons
- Baker, R. C. "The square-free divisor problem." The Quarterly Journal of Mathematics 45.3 (1994): 269-277.
Original source: https://en.wikipedia.org/wiki/Square-free element.
Read more |