Cylindric numbering
In computability theory a cylindric numbering is a special kind of numbering first introduced by Yuri L. Ershov in 1973.
If a numbering [math]\displaystyle{ \nu }[/math] is reducible to [math]\displaystyle{ \mu }[/math] then there exists a computable function [math]\displaystyle{ f }[/math] with [math]\displaystyle{ \nu = \mu \circ f }[/math]. Usually [math]\displaystyle{ f }[/math] is not injective, but if [math]\displaystyle{ \mu }[/math] is a cylindric numbering we can always find an injective [math]\displaystyle{ f }[/math].
Definition
A numbering [math]\displaystyle{ \nu }[/math] is called cylindric if
- [math]\displaystyle{ \nu \equiv_1 c(\nu). }[/math]
That is if it is one-equivalent to its cylindrification
A set [math]\displaystyle{ S }[/math] is called cylindric if its indicator function
- [math]\displaystyle{ 1_S: \mathbb{N} \to \{0,1\} }[/math]
is a cylindric numbering.
Examples
- Every Gödel numbering is cylindric
Properties
- Cylindric numberings are idempotent: [math]\displaystyle{ \nu \circ \nu = \nu }[/math]
References
- Yu. L. Ershov, "Theorie der Numerierungen I." Zeitschrift für mathematische Logik und Grundlagen der Mathematik 19, 289-388 (1973).
Original source: https://en.wikipedia.org/wiki/Cylindric numbering.
Read more |