De Rham–Weil theorem
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (December 2015) (Learn how and when to remove this template message) |
In algebraic topology, the De Rham–Weil theorem allows computation of sheaf cohomology using an acyclic resolution of the sheaf in question.
Let [math]\displaystyle{ \mathcal F }[/math] be a sheaf on a topological space [math]\displaystyle{ X }[/math] and [math]\displaystyle{ \mathcal F^\bullet }[/math] a resolution of [math]\displaystyle{ \mathcal F }[/math] by acyclic sheaves. Then
- [math]\displaystyle{ H^q(X,\mathcal F) \cong H^q(\mathcal F^\bullet(X)), }[/math]
where [math]\displaystyle{ H^q(X,\mathcal F) }[/math] denotes the [math]\displaystyle{ q }[/math]-th sheaf cohomology group of [math]\displaystyle{ X }[/math] with coefficients in [math]\displaystyle{ \mathcal F. }[/math]
The De Rham–Weil theorem follows from the more general fact that derived functors may be computed using acyclic resolutions instead of simply injective resolutions.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/De Rham–Weil theorem.
Read more |