Klein polyhedron
In the geometry of numbers, the Klein polyhedron, named after Felix Klein, is used to generalize the concept of continued fractions to higher dimensions.
Definition
Let [math]\displaystyle{ \textstyle C }[/math] be a closed simplicial cone in Euclidean space [math]\displaystyle{ \textstyle \mathbb{R}^n }[/math]. The Klein polyhedron of [math]\displaystyle{ \textstyle C }[/math] is the convex hull of the non-zero points of [math]\displaystyle{ \textstyle C \cap \mathbb{Z}^n }[/math].
Relation to continued fractions
Suppose [math]\displaystyle{ \textstyle \alpha \gt 0 }[/math] is an irrational number. In [math]\displaystyle{ \textstyle \mathbb{R}^2 }[/math], the cones generated by [math]\displaystyle{ \textstyle \{(1, \alpha), (1, 0)\} }[/math] and by [math]\displaystyle{ \textstyle \{(1, \alpha), (0, 1)\} }[/math] give rise to two Klein polyhedra, each of which is bounded by a sequence of adjoining line segments. Define the integer length of a line segment to be one less than the size of its intersection with [math]\displaystyle{ \textstyle \mathbb{Z}^n. }[/math] Then the integer lengths of the edges of these two Klein polyhedra encode the continued-fraction expansion of [math]\displaystyle{ \textstyle \alpha }[/math], one matching the even terms and the other matching the odd terms.
Graphs associated with the Klein polyhedron
Suppose [math]\displaystyle{ \textstyle C }[/math] is generated by a basis [math]\displaystyle{ \textstyle (a_i) }[/math] of [math]\displaystyle{ \textstyle \mathbb{R}^n }[/math] (so that [math]\displaystyle{ \textstyle C = \{ \sum_i \lambda_i a_i : (\forall i) \; \lambda_i \geq 0 \} }[/math]), and let [math]\displaystyle{ \textstyle (w_i) }[/math] be the dual basis (so that [math]\displaystyle{ \textstyle C = \{ x : (\forall i) \; \langle w_i, x \rangle \geq 0\} }[/math]). Write [math]\displaystyle{ \textstyle D(x) }[/math] for the line generated by the vector [math]\displaystyle{ \textstyle x }[/math], and [math]\displaystyle{ \textstyle H(x) }[/math] for the hyperplane orthogonal to [math]\displaystyle{ \textstyle x }[/math].
Call the vector [math]\displaystyle{ \textstyle x \in \mathbb{R}^n }[/math] irrational if [math]\displaystyle{ \textstyle H(x) \cap \mathbb{Q}^n = \{0\} }[/math]; and call the cone [math]\displaystyle{ \textstyle C }[/math] irrational if all the vectors [math]\displaystyle{ \textstyle a_i }[/math] and [math]\displaystyle{ \textstyle w_i }[/math] are irrational.
The boundary [math]\displaystyle{ \textstyle V }[/math] of a Klein polyhedron is called a sail. Associated with the sail [math]\displaystyle{ \textstyle V }[/math] of an irrational cone are two graphs:
- the graph [math]\displaystyle{ \textstyle \Gamma_{\mathrm e}(V) }[/math] whose vertices are vertices of [math]\displaystyle{ \textstyle V }[/math], two vertices being joined if they are endpoints of a (one-dimensional) edge of [math]\displaystyle{ \textstyle V }[/math];
- the graph [math]\displaystyle{ \textstyle \Gamma_{\mathrm f}(V) }[/math] whose vertices are [math]\displaystyle{ \textstyle (n-1) }[/math]-dimensional faces (chambers) of [math]\displaystyle{ \textstyle V }[/math], two chambers being joined if they share an [math]\displaystyle{ \textstyle (n-2) }[/math]-dimensional face.
Both of these graphs are structurally related to the directed graph [math]\displaystyle{ \textstyle \Upsilon_n }[/math] whose set of vertices is [math]\displaystyle{ \textstyle \mathrm{GL}_n(\mathbb{Q}) }[/math], where vertex [math]\displaystyle{ \textstyle A }[/math] is joined to vertex [math]\displaystyle{ \textstyle B }[/math] if and only if [math]\displaystyle{ \textstyle A^{-1}B }[/math] is of the form [math]\displaystyle{ \textstyle UW }[/math] where
- [math]\displaystyle{ U = \left( \begin{array}{cccc} 1 & \cdots & 0 & c_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & c_{n-1} \\ 0 & \cdots & 0 & c_n \end{array} \right) }[/math]
(with [math]\displaystyle{ \textstyle c_i \in \mathbb{Q} }[/math], [math]\displaystyle{ \textstyle c_n \neq 0 }[/math]) and [math]\displaystyle{ \textstyle W }[/math] is a permutation matrix. Assuming that [math]\displaystyle{ \textstyle V }[/math] has been triangulated, the vertices of each of the graphs [math]\displaystyle{ \textstyle \Gamma_{\mathrm e}(V) }[/math] and [math]\displaystyle{ \textstyle \Gamma_{\mathrm f}(V) }[/math] can be described in terms of the graph [math]\displaystyle{ \textstyle \Upsilon_n }[/math]:
- Given any path [math]\displaystyle{ \textstyle (x_0, x_1, \ldots) }[/math] in [math]\displaystyle{ \textstyle \Gamma_{\mathrm e}(V) }[/math], one can find a path [math]\displaystyle{ \textstyle (A_0, A_1, \ldots) }[/math] in [math]\displaystyle{ \textstyle \Upsilon_n }[/math] such that [math]\displaystyle{ \textstyle x_k = A_k (e) }[/math], where [math]\displaystyle{ \textstyle e }[/math] is the vector [math]\displaystyle{ \textstyle (1, \ldots, 1) \in \mathbb{R}^n }[/math].
- Given any path [math]\displaystyle{ \textstyle (\sigma_0, \sigma_1, \ldots) }[/math] in [math]\displaystyle{ \textstyle \Gamma_{\mathrm f}(V) }[/math], one can find a path [math]\displaystyle{ \textstyle (A_0, A_1, \ldots) }[/math] in [math]\displaystyle{ \textstyle \Upsilon_n }[/math] such that [math]\displaystyle{ \textstyle \sigma_k = A_k (\Delta) }[/math], where [math]\displaystyle{ \textstyle \Delta }[/math] is the [math]\displaystyle{ \textstyle (n-1) }[/math]-dimensional standard simplex in [math]\displaystyle{ \textstyle \mathbb{R}^n }[/math].
Generalization of Lagrange's theorem
Lagrange proved that for an irrational real number [math]\displaystyle{ \textstyle \alpha }[/math], the continued-fraction expansion of [math]\displaystyle{ \textstyle \alpha }[/math] is periodic if and only if [math]\displaystyle{ \textstyle \alpha }[/math] is a quadratic irrational. Klein polyhedra allow us to generalize this result.
Let [math]\displaystyle{ \textstyle K \subseteq \mathbb{R} }[/math] be a totally real algebraic number field of degree [math]\displaystyle{ \textstyle n }[/math], and let [math]\displaystyle{ \textstyle \alpha_i : K \to \mathbb{R} }[/math] be the [math]\displaystyle{ \textstyle n }[/math] real embeddings of [math]\displaystyle{ \textstyle K }[/math]. The simplicial cone [math]\displaystyle{ \textstyle C }[/math] is said to be split over [math]\displaystyle{ \textstyle K }[/math] if [math]\displaystyle{ \textstyle C = \{ x \in \mathbb{R}^n : (\forall i) \; \alpha_i(\omega_1) x_1 + \ldots + \alpha_i(\omega_n) x_n \geq 0 \} }[/math] where [math]\displaystyle{ \textstyle \omega_1, \ldots, \omega_n }[/math] is a basis for [math]\displaystyle{ \textstyle K }[/math] over [math]\displaystyle{ \textstyle \mathbb{Q} }[/math].
Given a path [math]\displaystyle{ \textstyle (A_0, A_1, \ldots) }[/math] in [math]\displaystyle{ \textstyle \Upsilon_n }[/math], let [math]\displaystyle{ \textstyle R_k = A_{k+1} A_k^{-1} }[/math]. The path is called periodic, with period [math]\displaystyle{ \textstyle m }[/math], if [math]\displaystyle{ \textstyle R_{k+qm} = R_k }[/math] for all [math]\displaystyle{ \textstyle k, q \geq 0 }[/math]. The period matrix of such a path is defined to be [math]\displaystyle{ \textstyle A_m A_0^{-1} }[/math]. A path in [math]\displaystyle{ \textstyle \Gamma_{\mathrm e}(V) }[/math] or [math]\displaystyle{ \textstyle \Gamma_{\mathrm f}(V) }[/math] associated with such a path is also said to be periodic, with the same period matrix.
The generalized Lagrange theorem states that for an irrational simplicial cone [math]\displaystyle{ \textstyle C \subseteq \mathbb{R}^n }[/math], with generators [math]\displaystyle{ \textstyle (a_i) }[/math] and [math]\displaystyle{ \textstyle (w_i) }[/math] as above and with sail [math]\displaystyle{ \textstyle V }[/math], the following three conditions are equivalent:
- [math]\displaystyle{ \textstyle C }[/math] is split over some totally real algebraic number field of degree [math]\displaystyle{ \textstyle n }[/math].
- For each of the [math]\displaystyle{ \textstyle a_i }[/math] there is periodic path of vertices [math]\displaystyle{ \textstyle x_0, x_1, \ldots }[/math] in [math]\displaystyle{ \textstyle \Gamma_{\mathrm e}(V) }[/math] such that the [math]\displaystyle{ \textstyle x_k }[/math] asymptotically approach the line [math]\displaystyle{ \textstyle D(a_i) }[/math]; and the period matrices of these paths all commute.
- For each of the [math]\displaystyle{ \textstyle w_i }[/math] there is periodic path of chambers [math]\displaystyle{ \textstyle \sigma_0, \sigma_1, \ldots }[/math] in [math]\displaystyle{ \textstyle \Gamma_{\mathrm f}(V) }[/math] such that the [math]\displaystyle{ \textstyle \sigma_k }[/math] asymptotically approach the hyperplane [math]\displaystyle{ \textstyle H(w_i) }[/math]; and the period matrices of these paths all commute.
Example
Take [math]\displaystyle{ \textstyle n = 2 }[/math] and [math]\displaystyle{ \textstyle K = \mathbb{Q}(\sqrt{2}) }[/math]. Then the simplicial cone [math]\displaystyle{ \textstyle \{(x,y) : x \geq 0, \vert y \vert \leq x / \sqrt{2}\} }[/math] is split over [math]\displaystyle{ \textstyle K }[/math]. The vertices of the sail are the points [math]\displaystyle{ \textstyle (p_k, \pm q_k) }[/math] corresponding to the even convergents [math]\displaystyle{ \textstyle p_k / q_k }[/math] of the continued fraction for [math]\displaystyle{ \textstyle \sqrt{2} }[/math]. The path of vertices [math]\displaystyle{ \textstyle (x_k) }[/math] in the positive quadrant starting at [math]\displaystyle{ \textstyle (1, 0) }[/math] and proceeding in a positive direction is [math]\displaystyle{ \textstyle ((1,0), (3,2), (17,12), (99,70), \ldots) }[/math]. Let [math]\displaystyle{ \textstyle \sigma_k }[/math] be the line segment joining [math]\displaystyle{ \textstyle x_k }[/math] to [math]\displaystyle{ \textstyle x_{k+1} }[/math]. Write [math]\displaystyle{ \textstyle \bar{x}_k }[/math] and [math]\displaystyle{ \textstyle \bar{\sigma}_k }[/math] for the reflections of [math]\displaystyle{ \textstyle x_k }[/math] and [math]\displaystyle{ \textstyle \sigma_k }[/math] in the [math]\displaystyle{ \textstyle x }[/math]-axis. Let [math]\displaystyle{ \textstyle T = \left( \begin{array}{cc} 3 & 4 \\ 2 & 3 \end{array} \right) }[/math], so that [math]\displaystyle{ \textstyle x_{k+1} = T x_k }[/math], and let [math]\displaystyle{ \textstyle R = \left( \begin{array}{cc} 6 & 1 \\ -1 & 0 \end{array} \right) = \left( \begin{array}{cc} 1 & 6 \\ 0 & -1 \end{array} \right) \left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) }[/math].
Let [math]\displaystyle{ \textstyle M_{\mathrm e} = \left( \begin{array}{cc} \frac12 & \frac12 \\ \frac14 & -\frac14 \end{array} \right) }[/math], [math]\displaystyle{ \textstyle \bar{M}_{\mathrm e} = \left( \begin{array}{cc} \frac12 & \frac12 \\ -\frac14 & \frac14 \end{array} \right) }[/math], [math]\displaystyle{ \textstyle M_{\mathrm f} = \left( \begin{array}{cc} 3 & 1 \\ 2 & 0 \end{array} \right) }[/math], and [math]\displaystyle{ \textstyle \bar{M}_{\mathrm f} = \left( \begin{array}{cc} 3 & 1 \\ -2 & 0 \end{array} \right) }[/math].
- The paths [math]\displaystyle{ \textstyle (M_{\mathrm e} R^k) }[/math] and [math]\displaystyle{ \textstyle (\bar{M}_{\mathrm e} R^k) }[/math] are periodic (with period one) in [math]\displaystyle{ \textstyle \Upsilon_2 }[/math], with period matrices [math]\displaystyle{ \textstyle M_{\mathrm e} R M_{\mathrm e}^{-1} = T }[/math] and [math]\displaystyle{ \textstyle \bar{M}_{\mathrm e} R \bar{M}_{\mathrm e}^{-1} = T^{-1} }[/math]. We have [math]\displaystyle{ \textstyle x_k = M_{\mathrm e} R^k (e) }[/math] and [math]\displaystyle{ \textstyle \bar{x}_k = \bar{M}_{\mathrm e} R^k (e) }[/math].
- The paths [math]\displaystyle{ \textstyle (M_{\mathrm f} R^k) }[/math] and [math]\displaystyle{ \textstyle (\bar{M}_{\mathrm f} R^k) }[/math] are periodic (with period one) in [math]\displaystyle{ \textstyle \Upsilon_2 }[/math], with period matrices [math]\displaystyle{ \textstyle M_{\mathrm f} R M_{\mathrm f}^{-1} = T }[/math] and [math]\displaystyle{ \textstyle \bar{M}_{\mathrm f} R \bar{M}_{\mathrm f}^{-1} = T^{-1} }[/math]. We have [math]\displaystyle{ \textstyle \sigma_k = M_{\mathrm f} R^k (\Delta) }[/math] and [math]\displaystyle{ \textstyle \bar{\sigma}_k = \bar{M}_{\mathrm f} R^k (\Delta) }[/math].
Generalization of approximability
A real number [math]\displaystyle{ \textstyle \alpha \gt 0 }[/math] is called badly approximable if [math]\displaystyle{ \textstyle \{ q (p \alpha - q) : p,q \in \mathbb{Z}, q \gt 0\} }[/math] is bounded away from zero. An irrational number is badly approximable if and only if the partial quotients of its continued fraction are bounded.[1] This fact admits of a generalization in terms of Klein polyhedra.
Given a simplicial cone [math]\displaystyle{ \textstyle C = \{ x : (\forall i) \; \langle w_i, x \rangle \geq 0\} }[/math] in [math]\displaystyle{ \textstyle \mathbb{R}^n }[/math], where [math]\displaystyle{ \textstyle \langle w_i, w_i \rangle = 1 }[/math], define the norm minimum of [math]\displaystyle{ \textstyle C }[/math] as [math]\displaystyle{ \textstyle N(C) = \inf \{ \prod_i \langle w_i, x \rangle : x \in \mathbb{Z}^n \cap C \setminus \{0\} \} }[/math].
Given vectors [math]\displaystyle{ \textstyle \mathbf{v}_1, \ldots, \mathbf{v}_m \in \mathbb{Z}^n }[/math], let [math]\displaystyle{ \textstyle [\mathbf{v}_1, \ldots, \mathbf{v}_m] = \sum_{i_1 \lt \cdots \lt i_n} \vert \det(\mathbf{v}_{i_1} \cdots \mathbf{v}_{i_n}) \vert }[/math]. This is the Euclidean volume of [math]\displaystyle{ \textstyle \{ \sum_i \lambda_i \mathbf{v}_i : (\forall i) \; 0 \leq \lambda_i \leq 1 \} }[/math].
Let [math]\displaystyle{ \textstyle V }[/math] be the sail of an irrational simplicial cone [math]\displaystyle{ \textstyle C }[/math].
- For a vertex [math]\displaystyle{ \textstyle x }[/math] of [math]\displaystyle{ \textstyle \Gamma_{\mathrm e}(V) }[/math], define [math]\displaystyle{ \textstyle [x] = [\mathbf{v}_1, \ldots, \mathbf{v}_m] }[/math] where [math]\displaystyle{ \textstyle \mathbf{v}_1, \ldots, \mathbf{v}_m }[/math] are primitive vectors in [math]\displaystyle{ \textstyle \mathbb{Z}^n }[/math] generating the edges emanating from [math]\displaystyle{ \textstyle x }[/math].
- For a vertex [math]\displaystyle{ \textstyle \sigma }[/math] of [math]\displaystyle{ \textstyle \Gamma_{\mathrm f}(V) }[/math], define [math]\displaystyle{ \textstyle [\sigma] = [\mathbf{v}_1, \ldots, \mathbf{v}_m] }[/math] where [math]\displaystyle{ \textstyle \mathbf{v}_1, \ldots, \mathbf{v}_m }[/math] are the extreme points of [math]\displaystyle{ \textstyle \sigma }[/math].
Then [math]\displaystyle{ \textstyle N(C) \gt 0 }[/math] if and only if [math]\displaystyle{ \textstyle \{ [x] : x \in \Gamma_{\mathrm e}(V) \} }[/math] and [math]\displaystyle{ \textstyle \{ [\sigma] : \sigma \in \Gamma_{\mathrm f}(V) \} }[/math] are both bounded.
The quantities [math]\displaystyle{ \textstyle [x] }[/math] and [math]\displaystyle{ \textstyle [\sigma] }[/math] are called determinants. In two dimensions, with the cone generated by [math]\displaystyle{ \textstyle \{(1, \alpha), (1,0)\} }[/math], they are just the partial quotients of the continued fraction of [math]\displaystyle{ \textstyle \alpha }[/math].
See also
References
- ↑ Bugeaud, Yann (2012). Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics. 193. Cambridge: Cambridge University Press. p. 245. ISBN 978-0-521-11169-0.
- O. N. German, 2007, "Klein polyhedra and lattices with positive norm minima". Journal de théorie des nombres de Bordeaux 19: 175–190.
- E. I. Korkina, 1995, "Two-dimensional continued fractions. The simplest examples". Proc. Steklov Institute of Mathematics 209: 124–144.
- G. Lachaud, 1998, "Sails and Klein polyhedra" in Contemporary Mathematics 210. American Mathematical Society: 373–385.
Original source: https://en.wikipedia.org/wiki/Klein polyhedron.
Read more |