Angle condition
In mathematics, the angle condition is a constraint that is satisfied by the locus of points in the s-plane on which closed-loop poles of a system reside. In combination with the magnitude condition, these two mathematical expressions fully determine the root locus.
Let the characteristic equation of a system be [math]\displaystyle{ 1+\textbf{G}(s)=0 }[/math], where [math]\displaystyle{ \textbf{G}(s)=\frac{\textbf{P}(s)}{\textbf{Q}(s)} }[/math]. Rewriting the equation in polar form is useful.
- [math]\displaystyle{ e^{j2\pi}+\textbf{G}(s)=0 }[/math]
- [math]\displaystyle{ \textbf{G}(s)=-1=e^{j(\pi+2k\pi)} }[/math]
where [math]\displaystyle{ k=0,1,2,\ldots }[/math] are the only solutions to this equation. Rewriting [math]\displaystyle{ \textbf{G}(s) }[/math] in factored form,
- [math]\displaystyle{ \textbf{G}(s)=\frac{\textbf{P}(s)}{\textbf{Q}(s)}=K\frac{(s-a_1)(s-a_2) \cdots (s-a_n)}{(s-b_1)(s-b_2)\cdots(s-b_m)}, }[/math]
and representing each factor [math]\displaystyle{ (s-a_p) }[/math] and [math]\displaystyle{ (s-b_q) }[/math] by their vector equivalents, [math]\displaystyle{ A_pe^{j\theta_p} }[/math] and [math]\displaystyle{ B_qe^{j\varphi_q} }[/math], respectively, [math]\displaystyle{ \textbf{G}(s) }[/math] may be rewritten.
- [math]\displaystyle{ \textbf{G}(s)=K\frac{A_1 A_2 \cdots A_ne^{j(\theta_1+\theta_2+\cdots+\theta_n)}}{B_1 B_2 \cdots B_m e^{j(\varphi_1+\varphi_2+\cdots+\varphi_m)}} }[/math]
Simplifying the characteristic equation,
- [math]\displaystyle{ \begin{align} e^{j(\pi+2k\pi)} & = K\frac{A_1 A_2 \cdots A_ne^{j(\theta_1+\theta_2+\cdots+\theta_n)}}{B_1 B_2 \cdots B_m e^{j(\varphi_1+\varphi_2+\cdots+\varphi_m)}} \\[6pt] & = K\frac{A_1 A_2 \cdots A_n}{B_1 B_2 \cdots B_m}e^{j(\theta_1+\theta_2+\cdots+\theta_n-(\varphi_1+\varphi_2+\cdots+\varphi_m))}, \end{align} }[/math]
from which we derive the angle condition:
- [math]\displaystyle{ \pi+2k\pi=\theta_1+\theta_2+\cdots+\theta_n-(\varphi_1+\varphi_2+\cdots+\varphi_m) }[/math]
for [math]\displaystyle{ k=0,1,2,\ldots }[/math],
- [math]\displaystyle{ \theta_1,\theta_2, \ldots, \theta_n }[/math]
are the angles of zeros 1 to n, and
- [math]\displaystyle{ \varphi_1,\varphi_2, \ldots, \varphi_m }[/math]
are the angles of poles 1 to m.
The magnitude condition is derived similarly.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Angle condition.
Read more |