Solid set

From HandWiki
Revision as of 19:36, 6 March 2023 by Nautica (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, specifically in order theory and functional analysis, a subset [math]\displaystyle{ S }[/math] of a vector lattice is said to be solid and is called an ideal if for all [math]\displaystyle{ s \in S }[/math] and [math]\displaystyle{ x \in X, }[/math] if [math]\displaystyle{ |x| \leq |s| }[/math] then [math]\displaystyle{ x \in S. }[/math] An ordered vector space whose order is Archimedean is said to be Archimedean ordered.[1] If [math]\displaystyle{ S\subseteq X }[/math] then the ideal generated by [math]\displaystyle{ S }[/math] is the smallest ideal in [math]\displaystyle{ X }[/math] containing [math]\displaystyle{ S. }[/math] An ideal generated by a singleton set is called a principal ideal in [math]\displaystyle{ X. }[/math]

Examples

The intersection of an arbitrary collection of ideals in [math]\displaystyle{ X }[/math] is again an ideal and furthermore, [math]\displaystyle{ X }[/math] is clearly an ideal of itself; thus every subset of [math]\displaystyle{ X }[/math] is contained in a unique smallest ideal.

In a locally convex vector lattice [math]\displaystyle{ X, }[/math] the polar of every solid neighborhood of the origin is a solid subset of the continuous dual space [math]\displaystyle{ X^{\prime} }[/math]; moreover, the family of all solid equicontinuous subsets of [math]\displaystyle{ X^{\prime} }[/math] is a fundamental family of equicontinuous sets, the polars (in bidual [math]\displaystyle{ X^{\prime\prime} }[/math]) form a neighborhood base of the origin for the natural topology on [math]\displaystyle{ X^{\prime\prime} }[/math] (that is, the topology of uniform convergence on equicontinuous subset of [math]\displaystyle{ X^{\prime} }[/math]).[2]

Properties

  • A solid subspace of a vector lattice [math]\displaystyle{ X }[/math] is necessarily a sublattice of [math]\displaystyle{ X. }[/math][1]
  • If [math]\displaystyle{ N }[/math] is a solid subspace of a vector lattice [math]\displaystyle{ X }[/math] then the quotient [math]\displaystyle{ X/N }[/math] is a vector lattice (under the canonical order).[1]

See also

References

  1. 1.0 1.1 1.2 Schaefer & Wolff 1999, pp. 204–214.
  2. Schaefer & Wolff 1999, pp. 234–242.