Ordered vector space
In mathematics, an ordered vector space or partially ordered vector space is a vector space equipped with a partial order that is compatible with the vector space operations.
Definition
Given a vector space [math]\displaystyle{ X }[/math] over the real numbers [math]\displaystyle{ \Reals }[/math] and a preorder [math]\displaystyle{ \,\leq\, }[/math] on the set [math]\displaystyle{ X, }[/math] the pair [math]\displaystyle{ (X, \leq) }[/math] is called a preordered vector space and we say that the preorder [math]\displaystyle{ \,\leq\, }[/math] is compatible with the vector space structure of [math]\displaystyle{ X }[/math] and call [math]\displaystyle{ \,\leq\, }[/math] a vector preorder on [math]\displaystyle{ X }[/math] if for all [math]\displaystyle{ x, y, z \in X }[/math] and [math]\displaystyle{ r \in \Reals }[/math] with [math]\displaystyle{ r \geq 0 }[/math] the following two axioms are satisfied
- [math]\displaystyle{ x \leq y }[/math] implies [math]\displaystyle{ x + z \leq y + z, }[/math]
- [math]\displaystyle{ y \leq x }[/math] implies [math]\displaystyle{ r y \leq r x. }[/math]
If [math]\displaystyle{ \,\leq\, }[/math] is a partial order compatible with the vector space structure of [math]\displaystyle{ X }[/math] then [math]\displaystyle{ (X, \leq) }[/math] is called an ordered vector space and [math]\displaystyle{ \,\leq\, }[/math] is called a vector partial order on [math]\displaystyle{ X. }[/math] The two axioms imply that translations and positive homotheties are automorphisms of the order structure and the mapping [math]\displaystyle{ x \mapsto -x }[/math] is an isomorphism to the dual order structure. Ordered vector spaces are ordered groups under their addition operation. Note that [math]\displaystyle{ x \leq y }[/math] if and only if [math]\displaystyle{ -y \leq -x. }[/math]
Positive cones and their equivalence to orderings
A subset [math]\displaystyle{ C }[/math] of a vector space [math]\displaystyle{ X }[/math] is called a cone if for all real [math]\displaystyle{ r \gt 0, }[/math] [math]\displaystyle{ r C \subseteq C. }[/math] A cone is called pointed if it contains the origin. A cone [math]\displaystyle{ C }[/math] is convex if and only if [math]\displaystyle{ C + C \subseteq C. }[/math] The intersection of any non-empty family of cones (resp. convex cones) is again a cone (resp. convex cone); the same is true of the union of an increasing (under set inclusion) family of cones (resp. convex cones). A cone [math]\displaystyle{ C }[/math] in a vector space [math]\displaystyle{ X }[/math] is said to be generating if [math]\displaystyle{ X = C - C. }[/math][1]
Given a preordered vector space [math]\displaystyle{ X, }[/math] the subset [math]\displaystyle{ X^+ }[/math] of all elements [math]\displaystyle{ x }[/math] in [math]\displaystyle{ (X, \leq) }[/math] satisfying [math]\displaystyle{ x \geq 0 }[/math] is a pointed convex cone with vertex [math]\displaystyle{ 0 }[/math] (that is, it contains [math]\displaystyle{ 0 }[/math]) called the positive cone of [math]\displaystyle{ X }[/math] and denoted by [math]\displaystyle{ \operatorname{PosCone} X. }[/math] The elements of the positive cone are called positive. If [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] are elements of a preordered vector space [math]\displaystyle{ (X, \leq), }[/math] then [math]\displaystyle{ x \leq y }[/math] if and only if [math]\displaystyle{ y - x \in X^+. }[/math] The positive cone is generating if and only if [math]\displaystyle{ X }[/math] is a directed set under [math]\displaystyle{ \,\leq. }[/math] Given any pointed convex cone [math]\displaystyle{ C }[/math] with vertex [math]\displaystyle{ 0, }[/math] one may define a preorder [math]\displaystyle{ \,\leq\, }[/math] on [math]\displaystyle{ X }[/math] that is compatible with the vector space structure of [math]\displaystyle{ X }[/math] by declaring for all [math]\displaystyle{ x, y \in X, }[/math] that [math]\displaystyle{ x \leq y }[/math] if and only if [math]\displaystyle{ y - x \in C; }[/math] the positive cone of this resulting preordered vector space is [math]\displaystyle{ C. }[/math] There is thus a one-to-one correspondence between pointed convex cones with vertex [math]\displaystyle{ 0 }[/math] and vector preorders on [math]\displaystyle{ X. }[/math][1] If [math]\displaystyle{ X }[/math] is preordered then we may form an equivalence relation on [math]\displaystyle{ X }[/math] by defining [math]\displaystyle{ x }[/math] is equivalent to [math]\displaystyle{ y }[/math] if and only if [math]\displaystyle{ x \leq y }[/math] and [math]\displaystyle{ y \leq x; }[/math] if [math]\displaystyle{ N }[/math] is the equivalence class containing the origin then [math]\displaystyle{ N }[/math] is a vector subspace of [math]\displaystyle{ X }[/math] and [math]\displaystyle{ X / N }[/math] is an ordered vector space under the relation: [math]\displaystyle{ A \leq B }[/math] if and only there exist [math]\displaystyle{ a \in A }[/math] and [math]\displaystyle{ b \in B }[/math] such that [math]\displaystyle{ a \leq b. }[/math][1]
A subset of [math]\displaystyle{ C }[/math] of a vector space [math]\displaystyle{ X }[/math] is called a proper cone if it is a convex cone of vertex [math]\displaystyle{ 0 }[/math] satisfying [math]\displaystyle{ C \cap (- C) = \{0\}. }[/math] Explicitly, [math]\displaystyle{ C }[/math] is a proper cone if (1) [math]\displaystyle{ C + C \subseteq C, }[/math] (2) [math]\displaystyle{ r C \subseteq C }[/math] for all [math]\displaystyle{ r \gt 0, }[/math] and (3) [math]\displaystyle{ C \cap (- C) = \{0\}. }[/math][2] The intersection of any non-empty family of proper cones is again a proper cone. Each proper cone [math]\displaystyle{ C }[/math] in a real vector space induces an order on the vector space by defining [math]\displaystyle{ x \leq y }[/math] if and only if [math]\displaystyle{ y - x \in C, }[/math] and furthermore, the positive cone of this ordered vector space will be [math]\displaystyle{ C. }[/math] Therefore, there exists a one-to-one correspondence between the proper convex cones of [math]\displaystyle{ X }[/math] and the vector partial orders on [math]\displaystyle{ X. }[/math]
By a total vector ordering on [math]\displaystyle{ X }[/math] we mean a total order on [math]\displaystyle{ X }[/math] that is compatible with the vector space structure of [math]\displaystyle{ X. }[/math] The family of total vector orderings on a vector space [math]\displaystyle{ X }[/math] is in one-to-one correspondence with the family of all proper cones that are maximal under set inclusion.[1] A total vector ordering cannot be Archimedean if its dimension, when considered as a vector space over the reals, is greater than 1.[1]
If [math]\displaystyle{ R }[/math] and [math]\displaystyle{ S }[/math] are two orderings of a vector space with positive cones [math]\displaystyle{ P }[/math] and [math]\displaystyle{ Q, }[/math] respectively, then we say that [math]\displaystyle{ R }[/math] is finer than [math]\displaystyle{ S }[/math] if [math]\displaystyle{ P \subseteq Q. }[/math][2]
Examples
The real numbers with the usual ordering form a totally ordered vector space. For all integers [math]\displaystyle{ n \geq 0, }[/math] the Euclidean space [math]\displaystyle{ \Reals^n }[/math] considered as a vector space over the reals with the lexicographic ordering forms a preordered vector space whose order is Archimedean if and only if [math]\displaystyle{ n = 1 }[/math].[3]
Pointwise order
If [math]\displaystyle{ S }[/math] is any set and if [math]\displaystyle{ X }[/math] is a vector space (over the reals) of real-valued functions on [math]\displaystyle{ S, }[/math] then the pointwise order on [math]\displaystyle{ X }[/math] is given by, for all [math]\displaystyle{ f, g \in X, }[/math] [math]\displaystyle{ f \leq g }[/math] if and only if [math]\displaystyle{ f(s) \leq g(s) }[/math] for all [math]\displaystyle{ s \in S. }[/math][3]
Spaces that are typically assigned this order include:
- the space [math]\displaystyle{ \ell^\infty(S, \Reals) }[/math] of bounded real-valued maps on [math]\displaystyle{ S. }[/math]
- the space [math]\displaystyle{ c_0(\Reals) }[/math] of real-valued sequences that converge to [math]\displaystyle{ 0. }[/math]
- the space [math]\displaystyle{ C(S, \Reals) }[/math] of continuous real-valued functions on a topological space [math]\displaystyle{ S. }[/math]
- for any non-negative integer [math]\displaystyle{ n, }[/math] the Euclidean space [math]\displaystyle{ \Reals^n }[/math] when considered as the space [math]\displaystyle{ C(\{1, \dots, n\}, \Reals) }[/math] where [math]\displaystyle{ S = \{1, \dots, n\} }[/math] is given the discrete topology.
The space [math]\displaystyle{ \mathcal{L}^\infty(\Reals, \Reals) }[/math] of all measurable almost-everywhere bounded real-valued maps on [math]\displaystyle{ \Reals, }[/math] where the preorder is defined for all [math]\displaystyle{ f, g \in \mathcal{L}^\infty(\Reals, \Reals) }[/math] by [math]\displaystyle{ f \leq g }[/math] if and only if [math]\displaystyle{ f(s) \leq g(s) }[/math] almost everywhere.[3]
Intervals and the order bound dual
An order interval in a preordered vector space is set of the form [math]\displaystyle{ \begin{alignat}{4} [a, b] &= \{x : a \leq x \leq b\}, \\[0.1ex] [a, b[ &= \{x : a \leq x \lt b\}, \\ ]a, b] &= \{x : a \lt x \leq b\}, \text{ or } \\ ]a, b[ &= \{x : a \lt x \lt b\}. \\ \end{alignat} }[/math] From axioms 1 and 2 above it follows that [math]\displaystyle{ x, y \in [a, b] }[/math] and [math]\displaystyle{ 0 \lt t \lt 1 }[/math] implies [math]\displaystyle{ t x + (1 - t) y }[/math] belongs to [math]\displaystyle{ [a, b]; }[/math] thus these order intervals are convex. A subset is said to be order bounded if it is contained in some order interval.[2] In a preordered real vector space, if for [math]\displaystyle{ x \geq 0 }[/math] then the interval of the form [math]\displaystyle{ [-x, x] }[/math] is balanced.[2] An order unit of a preordered vector space is any element [math]\displaystyle{ x }[/math] such that the set [math]\displaystyle{ [-x, x] }[/math] is absorbing.[2]
The set of all linear functionals on a preordered vector space [math]\displaystyle{ X }[/math] that map every order interval into a bounded set is called the order bound dual of [math]\displaystyle{ X }[/math] and denoted by [math]\displaystyle{ X^{\operatorname{b}}. }[/math][2] If a space is ordered then its order bound dual is a vector subspace of its algebraic dual.
A subset [math]\displaystyle{ A }[/math] of an ordered vector space [math]\displaystyle{ X }[/math] is called order complete if for every non-empty subset [math]\displaystyle{ B \subseteq A }[/math] such that [math]\displaystyle{ B }[/math] is order bounded in [math]\displaystyle{ A, }[/math] both [math]\displaystyle{ \sup B }[/math] and [math]\displaystyle{ \inf B }[/math] exist and are elements of [math]\displaystyle{ A. }[/math] We say that an ordered vector space [math]\displaystyle{ X }[/math] is order complete is [math]\displaystyle{ X }[/math] is an order complete subset of [math]\displaystyle{ X. }[/math][4]
Examples
If [math]\displaystyle{ (X, \leq) }[/math] is a preordered vector space over the reals with order unit [math]\displaystyle{ u, }[/math] then the map [math]\displaystyle{ p(x) := \inf \{t \in \Reals : x \leq t u\} }[/math] is a sublinear functional.[3]
Properties
If [math]\displaystyle{ X }[/math] is a preordered vector space then for all [math]\displaystyle{ x, y \in X, }[/math]
- [math]\displaystyle{ x \geq 0 }[/math] and [math]\displaystyle{ y \geq 0 }[/math] imply [math]\displaystyle{ x + y \geq 0. }[/math][3]
- [math]\displaystyle{ x \leq y }[/math] if and only if [math]\displaystyle{ -y \leq -x. }[/math][3]
- [math]\displaystyle{ x \leq y }[/math] and [math]\displaystyle{ r \lt 0 }[/math] imply [math]\displaystyle{ r x \geq r y. }[/math][3]
- [math]\displaystyle{ x \leq y }[/math] if and only if [math]\displaystyle{ y = \sup \{x, y\} }[/math] if and only if [math]\displaystyle{ x = \inf \{x, y\} }[/math][3]
- [math]\displaystyle{ \sup \{x, y\} }[/math] exists if and only if [math]\displaystyle{ \inf \{-x, -y\} }[/math] exists, in which case [math]\displaystyle{ \inf \{-x, -y\} = - \sup \{x, y\}. }[/math][3]
- [math]\displaystyle{ \sup \{x, y\} }[/math] exists if and only if [math]\displaystyle{ \inf \{x, y\} }[/math] exists, in which case for all [math]\displaystyle{ z \in X, }[/math][3]
- [math]\displaystyle{ \sup \{x + z, y + z\} = z + \sup \{x, y\}, }[/math] and
- [math]\displaystyle{ \inf \{x + z, y + z\} = z + \inf \{x, y\} }[/math]
- [math]\displaystyle{ x + y = \inf\{x, y\} + \sup \{x, y\}. }[/math]
- [math]\displaystyle{ X }[/math] is a vector lattice if and only if [math]\displaystyle{ \sup \{0, x\} }[/math] exists for all [math]\displaystyle{ x \in X. }[/math][3]
Spaces of linear maps
A cone [math]\displaystyle{ C }[/math] is said to be generating if [math]\displaystyle{ C - C }[/math] is equal to the whole vector space.[2] If [math]\displaystyle{ X }[/math] and [math]\displaystyle{ W }[/math] are two non-trivial ordered vector spaces with respective positive cones [math]\displaystyle{ P }[/math] and [math]\displaystyle{ Q, }[/math] then [math]\displaystyle{ P }[/math] is generating in [math]\displaystyle{ X }[/math] if and only if the set [math]\displaystyle{ C = \{u \in L(X; W) : u(P) \subseteq Q\} }[/math] is a proper cone in [math]\displaystyle{ L(X; W), }[/math] which is the space of all linear maps from [math]\displaystyle{ X }[/math] into [math]\displaystyle{ W. }[/math] In this case, the ordering defined by [math]\displaystyle{ C }[/math] is called the canonical ordering of [math]\displaystyle{ L(X; W). }[/math][2] More generally, if [math]\displaystyle{ M }[/math] is any vector subspace of [math]\displaystyle{ L(X; W) }[/math] such that [math]\displaystyle{ C \cap M }[/math] is a proper cone, the ordering defined by [math]\displaystyle{ C \cap M }[/math] is called the canonical ordering of [math]\displaystyle{ M. }[/math][2]
Positive functionals and the order dual
A linear function [math]\displaystyle{ f }[/math] on a preordered vector space is called positive if it satisfies either of the following equivalent conditions:
- [math]\displaystyle{ x \geq 0 }[/math] implies [math]\displaystyle{ f(x) \geq 0. }[/math]
- if [math]\displaystyle{ x \leq y }[/math] then [math]\displaystyle{ f(x) \leq f(y). }[/math][3]
The set of all positive linear forms on a vector space with positive cone [math]\displaystyle{ C, }[/math] called the dual cone and denoted by [math]\displaystyle{ C^*, }[/math] is a cone equal to the polar of [math]\displaystyle{ -C. }[/math] The preorder induced by the dual cone on the space of linear functionals on [math]\displaystyle{ X }[/math] is called the dual preorder.[3]
The order dual of an ordered vector space [math]\displaystyle{ X }[/math] is the set, denoted by [math]\displaystyle{ X^+, }[/math] defined by [math]\displaystyle{ X^+ := C^* - C^*. }[/math] Although [math]\displaystyle{ X^+ \subseteq X^b, }[/math] there do exist ordered vector spaces for which set equality does not hold.[2]
Special types of ordered vector spaces
Let [math]\displaystyle{ X }[/math] be an ordered vector space. We say that an ordered vector space [math]\displaystyle{ X }[/math] is Archimedean ordered and that the order of [math]\displaystyle{ X }[/math] is Archimedean if whenever [math]\displaystyle{ x }[/math] in [math]\displaystyle{ X }[/math] is such that [math]\displaystyle{ \{n x : n \in \N\} }[/math] is majorized (that is, there exists some [math]\displaystyle{ y \in X }[/math] such that [math]\displaystyle{ n x \leq y }[/math] for all [math]\displaystyle{ n \in \N }[/math]) then [math]\displaystyle{ x \leq 0. }[/math][2] A topological vector space (TVS) that is an ordered vector space is necessarily Archimedean if its positive cone is closed.[2]
We say that a preordered vector space [math]\displaystyle{ X }[/math] is regularly ordered and that its order is regular if it is Archimedean ordered and [math]\displaystyle{ X^+ }[/math] distinguishes points in [math]\displaystyle{ X. }[/math][2] This property guarantees that there are sufficiently many positive linear forms to be able to successfully use the tools of duality to study ordered vector spaces.[2]
An ordered vector space is called a vector lattice if for all elements [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y, }[/math] the supremum [math]\displaystyle{ \sup (x, y) }[/math] and infimum [math]\displaystyle{ \inf (x, y) }[/math] exist.[2]
Subspaces, quotients, and products
Throughout let [math]\displaystyle{ X }[/math] be a preordered vector space with positive cone [math]\displaystyle{ C. }[/math]
Subspaces
If [math]\displaystyle{ M }[/math] is a vector subspace of [math]\displaystyle{ X }[/math] then the canonical ordering on [math]\displaystyle{ M }[/math] induced by [math]\displaystyle{ X }[/math]'s positive cone [math]\displaystyle{ C }[/math] is the partial order induced by the pointed convex cone [math]\displaystyle{ C \cap M, }[/math] where this cone is proper if [math]\displaystyle{ C }[/math] is proper.[2]
Quotient space
Let [math]\displaystyle{ M }[/math] be a vector subspace of an ordered vector space [math]\displaystyle{ X, }[/math] [math]\displaystyle{ \pi : X \to X / M }[/math] be the canonical projection, and let [math]\displaystyle{ \hat{C} := \pi(C). }[/math] Then [math]\displaystyle{ \hat{C} }[/math] is a cone in [math]\displaystyle{ X / M }[/math] that induces a canonical preordering on the quotient space [math]\displaystyle{ X / M. }[/math] If [math]\displaystyle{ \hat{C} }[/math] is a proper cone in[math]\displaystyle{ X / M }[/math] then [math]\displaystyle{ \hat{C} }[/math] makes [math]\displaystyle{ X / M }[/math] into an ordered vector space.[2] If [math]\displaystyle{ M }[/math] is [math]\displaystyle{ C }[/math]-saturated then [math]\displaystyle{ \hat{C} }[/math] defines the canonical order of [math]\displaystyle{ X / M. }[/math][1] Note that [math]\displaystyle{ X = \Reals^2_0 }[/math] provides an example of an ordered vector space where [math]\displaystyle{ \pi(C) }[/math] is not a proper cone.
If [math]\displaystyle{ X }[/math] is also a topological vector space (TVS) and if for each neighborhood [math]\displaystyle{ V }[/math] of the origin in [math]\displaystyle{ X }[/math] there exists a neighborhood [math]\displaystyle{ U }[/math] of the origin such that [math]\displaystyle{ [(U + N) \cap C] \subseteq V + N }[/math] then [math]\displaystyle{ \hat{C} }[/math] is a normal cone for the quotient topology.[1]
If [math]\displaystyle{ X }[/math] is a topological vector lattice and [math]\displaystyle{ M }[/math] is a closed solid sublattice of [math]\displaystyle{ X }[/math] then [math]\displaystyle{ X / L }[/math] is also a topological vector lattice.[1]
Product
If [math]\displaystyle{ S }[/math] is any set then the space [math]\displaystyle{ X^S }[/math] of all functions from [math]\displaystyle{ S }[/math] into [math]\displaystyle{ X }[/math] is canonically ordered by the proper cone [math]\displaystyle{ \left\{f \in X^S : f(s) \in C \text{ for all } s \in S\right\}. }[/math][2]
Suppose that [math]\displaystyle{ \left\{X_\alpha : \alpha \in A\right\} }[/math] is a family of preordered vector spaces and that the positive cone of [math]\displaystyle{ X_\alpha }[/math] is [math]\displaystyle{ C_\alpha. }[/math] Then [math]\displaystyle{ C := \prod_\alpha C_\alpha }[/math] is a pointed convex cone in [math]\displaystyle{ \prod_\alpha X_\alpha, }[/math] which determines a canonical ordering on [math]\displaystyle{ \prod_\alpha X_\alpha; }[/math] [math]\displaystyle{ C }[/math] is a proper cone if all [math]\displaystyle{ C_\alpha }[/math] are proper cones.[2]
Algebraic direct sum
The algebraic direct sum [math]\displaystyle{ \bigoplus_\alpha X_\alpha }[/math] of [math]\displaystyle{ \left\{X_\alpha : \alpha \in A\right\} }[/math] is a vector subspace of [math]\displaystyle{ \prod_\alpha X_\alpha }[/math] that is given the canonical subspace ordering inherited from [math]\displaystyle{ \prod_\alpha X_\alpha. }[/math][2] If [math]\displaystyle{ X_1, \dots, X_n }[/math] are ordered vector subspaces of an ordered vector space [math]\displaystyle{ X }[/math] then [math]\displaystyle{ X }[/math] is the ordered direct sum of these subspaces if the canonical algebraic isomorphism of [math]\displaystyle{ X }[/math] onto [math]\displaystyle{ \prod_\alpha X_\alpha }[/math] (with the canonical product order) is an order isomorphism.[2]
Examples
- The real numbers with the usual order is an ordered vector space.
- [math]\displaystyle{ \Reals^2 }[/math] is an ordered vector space with the [math]\displaystyle{ \,\leq\, }[/math] relation defined in any of the following ways (in order of increasing strength, that is, decreasing sets of pairs):
- Lexicographical order: [math]\displaystyle{ (a, b) \leq (c, d) }[/math] if and only if [math]\displaystyle{ a \lt c }[/math] or [math]\displaystyle{ (a = c \text{ and } b \leq d). }[/math] This is a total order. The positive cone is given by [math]\displaystyle{ x \gt 0 }[/math] or [math]\displaystyle{ (x = 0 \text{ and } y \geq 0), }[/math] that is, in polar coordinates, the set of points with the angular coordinate satisfying [math]\displaystyle{ -\pi / 2 \lt \theta \leq \pi / 2, }[/math] together with the origin.
- [math]\displaystyle{ (a, b) \leq (c, d) }[/math] if and only if [math]\displaystyle{ a \leq c }[/math] and [math]\displaystyle{ b \leq d }[/math] (the product order of two copies of [math]\displaystyle{ \Reals }[/math] with [math]\displaystyle{ \leq }[/math]). This is a partial order. The positive cone is given by [math]\displaystyle{ x \geq 0 }[/math] and [math]\displaystyle{ y \geq 0, }[/math] that is, in polar coordinates [math]\displaystyle{ 0 \leq \theta \leq \pi / 2, }[/math] together with the origin.
- [math]\displaystyle{ (a, b) \leq (c, d) }[/math] if and only if [math]\displaystyle{ (a \lt c \text{ and } b \lt d) }[/math] or [math]\displaystyle{ (a = c \text{ and } b = d) }[/math] (the reflexive closure of the direct product of two copies of [math]\displaystyle{ \Reals }[/math] with "<"). This is also a partial order. The positive cone is given by [math]\displaystyle{ (x \gt 0 \text{ and } y \gt 0) }[/math] or [math]\displaystyle{ x = y = 0), }[/math] that is, in polar coordinates, [math]\displaystyle{ 0 \lt \theta \lt \pi / 2, }[/math] together with the origin.
- Only the second order is, as a subset of [math]\displaystyle{ \Reals^4, }[/math] closed; see partial orders in topological spaces.
- For the third order the two-dimensional "intervals" [math]\displaystyle{ p \lt x \lt q }[/math] are open sets which generate the topology.
- [math]\displaystyle{ \Reals^n }[/math] is an ordered vector space with the [math]\displaystyle{ \,\leq\, }[/math] relation defined similarly. For example, for the second order mentioned above:
- [math]\displaystyle{ x \leq y }[/math] if and only if [math]\displaystyle{ x_i \leq y_i }[/math] for [math]\displaystyle{ i = 1, \dots, n. }[/math]
- A Riesz space is an ordered vector space where the order gives rise to a lattice.
- The space of continuous functions on [math]\displaystyle{ [0, 1] }[/math] where [math]\displaystyle{ f \leq g }[/math] if and only if [math]\displaystyle{ f(x) \leq g(x) }[/math] for all [math]\displaystyle{ x }[/math] in [math]\displaystyle{ [0, 1]. }[/math]
See also
- Order topology (functional analysis) – Topology of an ordered vector space
- Ordered field – Algebraic object with an ordered structure
- Ordered ring
- Ordered topological vector space
- Partially ordered space – Partially ordered topological space
- Product order
- Riesz space – Partially ordered vector space, ordered as a lattice
- Topological vector lattice
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Schaefer & Wolff 1999, pp. 250-257.
- ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 Schaefer & Wolff 1999, pp. 205–209.
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 Narici & Beckenstein 2011, pp. 139-153.
- ↑ Schaefer & Wolff 1999, pp. 204-214.
Bibliography
- Aliprantis, Charalambos D; Burkinshaw, Owen (2003). Locally solid Riesz spaces with applications to economics (Second ed.). Providence, R. I.: American Mathematical Society. ISBN 0-8218-3408-8.
- Bourbaki, Nicolas; Elements of Mathematics: Topological Vector Spaces; ISBN 0-387-13627-4.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Wong (1979). Schwartz spaces, nuclear spaces, and tensor products. Berlin New York: Springer-Verlag. ISBN 3-540-09513-6. OCLC 5126158.
Original source: https://en.wikipedia.org/wiki/Ordered vector space.
Read more |