4-6 duoprism

From HandWiki
Uniform 4-6 duoprisms
4-6 duoprism.png 140px
Schlegel diagrams
Type Prismatic uniform polychoron
Schläfli symbol {4}×{6}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells 4 hexagonal prisms,
6 square prisms
Faces 24+6 squares,
4 hexagons
Edges 48
Vertices 24
Vertex figure Digonal disphenoid
Symmetry [4,2,6], order 48
Dual 4-6 duopyramid
Properties convex, vertex-uniform

In geometry of 4 dimensions, a 4-6 duoprism, a duoprism and 4-polytope resulting from the Cartesian product of a square and a hexagon.

The 4-6 duoprism cells exist in some of the uniform 5-polytopes in the B5 family.

Images

4,6 duoprism net.png
Net

4-6 duopyramid

4-6 duopyramid
Type duopyramid
Schläfli symbol {4}+{6}
Coxeter diagrams CDel node f1.pngCDel 4.pngCDel node.pngCDel 2x.pngCDel node f1.pngCDel 6.pngCDel node.png
CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 3.pngCDel node f1.png
CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 6.pngCDel node.png
CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Cells 24 digonal disphenoids
Faces 48 isosceles triangles
Edges 34 (24+4+6)
Vertices 10 (4+6)
Symmetry [4,2,6], order 48
Dual 4-6 duoprism
Properties convex, facet-transitive

The dual of a 4-6 duoprism is called a 4-6 duopyramid. It has 18 digonal disphenoid cells, 34 isosceles triangular faces, 34 edges, and 10 vertices.

4-6 duopyramid ortho.png
Orthogonal projection

Related polytopes

The 2-3 duoantiprism is an alternation of the 4-6 duoprism, represented by CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 3x.pngCDel node h.png, but is not uniform. It has a highest symmetry construction of order 24, with 22 cells composed of 4 octahedra (as triangular antiprisms) and 18 tetrahedra (6 tetragonal disphenoids and 12 digonal disphenoids). There exists a construction with regular octahedra with an edge length ratio of 1 : 1.155. The vertex figure is an augmented triangular prism, which has a regular-faced variant that is not isogonal.

2-3 duoantiprism vertex figure.png
Vertex figure for the 2-3 duoantiprism

See also

Notes

References

  • Regular Polytopes, H. S. M. Coxeter, Dover Publications, Inc., 1973, New York, p. 124.
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN:0-486-40919-8 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues)
    • Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33–62, 1937.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN:978-1-56881-220-5 (Chapter 26)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N. W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Catalogue of Convex Polychora, section 6, George Olshevsky.

External links