Uniform 5-polytope

From HandWiki
Short description: Five-dimensional geometric shape
Graphs of regular and uniform 5-polytopes.
5-simplex t0.svg
5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t1.svg
Rectified 5-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t01.svg
Truncated 5-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t02.svg
Cantellated 5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t03.svg
Runcinated 5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
5-simplex t04.svg
Stericated 5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-cube t4.svg
5-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t34.svg
Truncated 5-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t3.svg
Rectified 5-orthoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t24.svg
Cantellated 5-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t14.svg
Runcinated 5-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
5-cube t02.svg
Cantellated 5-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t03.svg
Runcinated 5-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
5-cube t04.svg
Stericated 5-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-cube t0.svg
5-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t01.svg
Truncated 5-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t1.svg
Rectified 5-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-demicube t0 D5.svg
5-demicube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-demicube t01 D5.svg
Truncated 5-demicube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-demicube t02 D5.svg
Cantellated 5-demicube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
5-demicube t03 D5.svg
Runcinated 5-demicube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

The complete set of convex uniform 5-polytopes has not been determined, but many can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter diagrams.

History of discovery

  • Regular polytopes: (convex faces)
    • 1852: Ludwig Schläfli proved in his manuscript Theorie der vielfachen Kontinuität that there are exactly 3 regular polytopes in 5 or more dimensions.
  • Convex semiregular polytopes: (Various definitions before Coxeter's uniform category)
    • 1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes with regular facets (convex regular 4-polytopes) in his publication On the Regular and Semi-Regular Figures in Space of n Dimensions.[1]
  • Convex uniform polytopes:
    • 1940-1988: The search was expanded systematically by H.S.M. Coxeter in his publication Regular and Semi-Regular Polytopes I, II, and III.
    • 1966: Norman W. Johnson completed his Ph.D. Dissertation under Coxeter, The Theory of Uniform Polytopes and Honeycombs, University of Toronto
  • Non-convex uniform polytopes:
    • 1966: Johnson describes two non-convex uniform antiprisms in 5-space in his dissertation.[2]
    • 2000-2023: Jonathan Bowers and other researchers search for other non-convex uniform 5-polytopes,[3] with a current count of 1297 known uniform 5-polytopes outside infinite families (convex and non-convex), excluding the prisms of the uniform 4-polytopes. The list is not proven complete.[4][5]

Regular 5-polytopes

Regular 5-polytopes can be represented by the Schläfli symbol {p,q,r,s}, with s {p,q,r} 4-polytope facets around each face. There are exactly three such regular polytopes, all convex:

There are no nonconvex regular polytopes in 5 dimensions or above.

Convex uniform 5-polytopes

Question, Web Fundamentals.svg Unsolved problem in mathematics:
What is the complete set of convex uniform 5-polytopes?[6]
(more unsolved problems in mathematics)

There are 104 known convex uniform 5-polytopes, plus a number of infinite families of duoprism prisms, and polygon-polyhedron duoprisms. All except the grand antiprism prism are based on Wythoff constructions, reflection symmetry generated with Coxeter groups.[citation needed]

Symmetry of uniform 5-polytopes in four dimensions

The 5-simplex is the regular form in the A5 family. The 5-cube and 5-orthoplex are the regular forms in the B5 family. The bifurcating graph of the D5 family contains the 5-orthoplex, as well as a 5-demicube which is an alternated 5-cube.

Each reflective uniform 5-polytope can be constructed in one or more reflective point group in 5 dimensions by a Wythoff construction, represented by rings around permutations of nodes in a Coxeter diagram. Mirror hyperplanes can be grouped, as seen by colored nodes, separated by even-branches. Symmetry groups of the form [a,b,b,a], have an extended symmetry, a,b,b,a, like [3,3,3,3], doubling the symmetry order. Uniform polytopes in these group with symmetric rings contain this extended symmetry.

If all mirrors of a given color are unringed (inactive) in a given uniform polytope, it will have a lower symmetry construction by removing all of the inactive mirrors. If all the nodes of a given color are ringed (active), an alternation operation can generate a new 5-polytope with chiral symmetry, shown as "empty" circled nodes", but the geometry is not generally adjustable to create uniform solutions.

Coxeter diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.
Fundamental families[7]
Group
symbol
Order Coxeter
graph
Bracket
notation
Commutator
subgroup
Coxeter
number
(h)
Reflections
m=5/2 h[8]
A5 720 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png [3,3,3,3] [3,3,3,3]+ 6 15 CDel node c1.png
D5 1920 CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel nodeab c1.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png [3,3,31,1] [3,3,31,1]+ 8 20 CDel node c1.png
B5 3840 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png [4,3,3,3] 10 5 CDel node c2.png 20 CDel node c1.png
Uniform prisms

There are 5 finite categorical uniform prismatic families of polytopes based on the nonprismatic uniform 4-polytopes. There is one infinite family of 5-polytopes based on prisms of the uniform duoprisms {p}×{q}×{ }.

Coxeter
group
Order Coxeter
diagram
Coxeter
notation
Commutator
subgroup
Reflections
A4A1 120 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [3,3,3,2] = [3,3,3]×[ ] [3,3,3]+ 10 CDel node c1.png 1 CDel node c5.png
D4A1 384 CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel nodeab c1.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [31,1,1,2] = [31,1,1]×[ ] [31,1,1]+ 12 CDel node c1.png 1 CDel node c5.png
B4A1 768 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [4,3,3,2] = [4,3,3]×[ ] 4 CDel node c2.png 12 CDel node c1.png 1 CDel node c5.png
F4A1 2304 CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel node c2.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [3,4,3,2] = [3,4,3]×[ ] [3+,4,3+] 12 CDel node c2.png 12 CDel node c1.png 1 CDel node c5.png
H4A1 28800 CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [5,3,3,2] = [3,4,3]×[ ] [5,3,3]+ 60 CDel node c1.png 1 CDel node c5.png
Duoprismatic prisms (use 2p and 2q for evens)
I2(p)I2(q)A1 8pq CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.pngCDel 2.pngCDel node.png CDel node c2.pngCDel p.pngCDel node c2.pngCDel 2.pngCDel node c1.pngCDel q.pngCDel node c1.pngCDel 2.pngCDel node c5.png [p,2,q,2] = [p]×[q]×[ ] [p+,2,q+] p CDel node c2.png q CDel node c1.png 1 CDel node c5.png
I2(2p)I2(q)A1 16pq CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.pngCDel 2.pngCDel node.png CDel node c3.pngCDel 2x.pngCDel p.pngCDel node c2.pngCDel 2.pngCDel node c1.pngCDel q.pngCDel node c1.pngCDel 2.pngCDel node c5.png [2p,2,q,2] = [2p]×[q]×[ ] p CDel node c3.png p CDel node c2.png q CDel node c1.png 1 CDel node c5.png
I2(2p)I2(2q)A1 32pq CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.pngCDel 2.pngCDel node.png CDel node c3.pngCDel 2x.pngCDel p.pngCDel node c2.pngCDel 2.pngCDel node c1.pngCDel 2x.pngCDel q.pngCDel node c4.pngCDel 2.pngCDel node c5.png [2p,2,2q,2] = [2p]×[2q]×[ ] p CDel node c3.png p CDel node c2.png q CDel node c1.png q CDel node c4.png 1 CDel node c5.png
Uniform duoprisms

There are 3 categorical uniform duoprismatic families of polytopes based on Cartesian products of the uniform polyhedra and regular polygons: {q,r}×{p}.

Coxeter
group
Order Coxeter
diagram
Coxeter
notation
Commutator
subgroup
Reflections
Prismatic groups (use 2p for even)
A3I2(p) 48p CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel p.pngCDel node c3.png [3,3,2,p] = [3,3]×[p] [(3,3)+,2,p+] 6 CDel node c1.png p CDel node c3.png
A3I2(2p) 96p CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 2x.pngCDel p.pngCDel node c4.png [3,3,2,2p] = [3,3]×[2p] 6 CDel node c1.png p CDel node c3.png p CDel node c4.png
B3I2(p) 96p CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel p.pngCDel node c3.png [4,3,2,p] = [4,3]×[p] 3 CDel node c2.png 6CDel node c1.png p CDel node c3.png
B3I2(2p) 192p CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 2x.pngCDel p.pngCDel node c4.png [4,3,2,2p] = [4,3]×[2p] 3 CDel node c2.png 6 CDel node c1.png p CDel node c3.png p CDel node c4.png
H3I2(p) 240p CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png CDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel p.pngCDel node c3.png [5,3,2,p] = [5,3]×[p] [(5,3)+,2,p+] 15 CDel node c1.png p CDel node c3.png
H3I2(2p) 480p CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png CDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 2x.pngCDel p.pngCDel node c4.png [5,3,2,2p] = [5,3]×[2p] 15 CDel node c1.png p CDel node c3.png p CDel node c4.png

Enumerating the convex uniform 5-polytopes

  • Simplex family: A5 [34]
    • 19 uniform 5-polytopes
  • Hypercube/Orthoplex family: B5 [4,33]
    • 31 uniform 5-polytopes
  • Demihypercube D5/E5 family: [32,1,1]
    • 23 uniform 5-polytopes (8 unique)
  • Polychoral prisms:
    • 56 uniform 5-polytope (45 unique) constructions based on prismatic families: [3,3,3]×[ ], [4,3,3]×[ ], [5,3,3]×[ ], [31,1,1]×[ ].
    • One non-Wythoffian - The grand antiprism prism is the only known non-Wythoffian convex uniform 5-polytope, constructed from two grand antiprisms connected by polyhedral prisms.

That brings the tally to: 19+31+8+45+1=104

In addition there are:

  • Infinitely many uniform 5-polytope constructions based on duoprism prismatic families: [p]×[q]×[ ].
  • Infinitely many uniform 5-polytope constructions based on duoprismatic families: [3,3]×[p], [4,3]×[p], [5,3]×[p].

The A5 family

There are 19 forms based on all permutations of the Coxeter diagrams with one or more rings. (16+4-1 cases)

They are named by Norman Johnson from the Wythoff construction operations upon regular 5-simplex (hexateron).

The A5 family has symmetry of order 720 (6 factorial). 7 of the 19 figures, with symmetrically ringed Coxeter diagrams have doubled symmetry, order 1440.

The coordinates of uniform 5-polytopes with 5-simplex symmetry can be generated as permutations of simple integers in 6-space, all in hyperplanes with normal vector (1,1,1,1,1,1).

# Base point Johnson naming system
Bowers name and (acronym)
Coxeter diagram
k-face element counts Vertex
figure
Facet counts by location: [3,3,3,3]
4 3 2 1 0 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(6)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
[3,3,2]
(15)
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
[3,2,3]
(20)
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[2,3,3]
(15)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(6)
Alt
1 (0,0,0,0,0,1) or (0,1,1,1,1,1) 5-simplex
hexateron (hix)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6 15 20 15 6 5-simplex verf.png
{3,3,3}
Schlegel wireframe 5-cell.png
{3,3,3}
- - - -
2 (0,0,0,0,1,1) or (0,0,1,1,1,1) Rectified 5-simplex
rectified hexateron (rix)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
12 45 80 60 15 Rectified 5-simplex verf.png
t{3,3}×{ }
Schlegel half-solid rectified 5-cell.png
r{3,3,3}
- - - Schlegel wireframe 5-cell.png
{3,3,3}
3 (0,0,0,0,1,2) or (0,1,2,2,2,2) Truncated 5-simplex
truncated hexateron (tix)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
12 45 80 75 30 Truncated 5-simplex verf.png
Tetrah.pyr
Schlegel half-solid truncated pentachoron.png
t{3,3,3}
- - - Schlegel wireframe 5-cell.png
{3,3,3}
4 (0,0,0,1,1,2) or (0,1,1,2,2,2) Cantellated 5-simplex
small rhombated hexateron (sarx)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
27 135 290 240 60 Cantellated hexateron verf.png
prism-wedge
Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
- - Tetrahedral prism.png
{ }×{3,3}
Schlegel half-solid rectified 5-cell.png
r{3,3,3}
5 (0,0,0,1,2,2) or (0,0,1,2,2,2) Bitruncated 5-simplex
bitruncated hexateron (bittix)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
12 60 140 150 60 Bitruncated 5-simplex verf.png Schlegel half-solid bitruncated 5-cell.png
2t{3,3,3}
- - - Schlegel half-solid truncated pentachoron.png
t{3,3,3}
6 (0,0,0,1,2,3) or (0,1,2,3,3,3) Cantitruncated 5-simplex
great rhombated hexateron (garx)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
27 135 290 300 120 Canitruncated 5-simplex verf.png Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
- - Tetrahedral prism.png
{ }×{3,3}
Schlegel half-solid truncated pentachoron.png
t{3,3,3}
7 (0,0,1,1,1,2) or (0,1,1,1,2,2) Runcinated 5-simplex
small prismated hexateron (spix)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
47 255 420 270 60 Runcinated 5-simplex verf.png Schlegel half-solid runcinated 5-cell.png
t0,3{3,3,3}
- 3-3 duoprism.png
{3}×{3}
Octahedral prism.png
{ }×r{3,3}
Schlegel half-solid rectified 5-cell.png
r{3,3,3}
8 (0,0,1,1,2,3) or (0,1,2,2,3,3) Runcitruncated 5-simplex
prismatotruncated hexateron (pattix)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
47 315 720 630 180 Runcitruncated 5-simplex verf.png Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
- 3-6 duoprism.png
{6}×{3}
Octahedral prism.png
{ }×r{3,3}
Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
9 (0,0,1,2,2,3) or (0,1,1,2,3,3) Runcicantellated 5-simplex
prismatorhombated hexateron (pirx)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
47 255 570 540 180 Runcicantellated 5-simplex verf.png Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
- 3-3 duoprism.png
{3}×{3}
Truncated tetrahedral prism.png
{ }×t{3,3}
Schlegel half-solid bitruncated 5-cell.png
2t{3,3,3}
10 (0,0,1,2,3,4) or (0,1,2,3,4,4) Runcicantitruncated 5-simplex
great prismated hexateron (gippix)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
47 315 810 900 360 Runcicantitruncated 5-simplex verf.png
Irr.5-cell
Schlegel half-solid omnitruncated 5-cell.png
t0,1,2,3{3,3,3}
- 3-6 duoprism.png
{3}×{6}
Truncated tetrahedral prism.png
{ }×t{3,3}
Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
11 (0,1,1,1,2,3) or (0,1,2,2,2,3) Steritruncated 5-simplex
celliprismated hexateron (cappix)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
62 330 570 420 120 Steritruncated 5-simplex verf.png Schlegel half-solid truncated pentachoron.png
t{3,3,3}
Truncated tetrahedral prism.png
{ }×t{3,3}
3-6 duoprism.png
{3}×{6}
Tetrahedral prism.png
{ }×{3,3}
Schlegel half-solid runcinated 5-cell.png
t0,3{3,3,3}
12 (0,1,1,2,3,4) or (0,1,2,3,3,4) Stericantitruncated 5-simplex
celligreatorhombated hexateron (cograx)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
62 480 1140 1080 360 Stericanitruncated 5-simplex verf.png Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
Truncated octahedral prism.png
{ }×tr{3,3}
3-6 duoprism.png
{3}×{6}
Cuboctahedral prism.png
{ }×rr{3,3}
Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
13 (0,0,0,1,1,1) Birectified 5-simplex
dodecateron (dot)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
12 60 120 90 20 Birectified hexateron verf.png
{3}×{3}
Schlegel half-solid rectified 5-cell.png
r{3,3,3}
- - - Schlegel half-solid rectified 5-cell.png
r{3,3,3}
14 (0,0,1,1,2,2) Bicantellated 5-simplex
small birhombated dodecateron (sibrid)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
32 180 420 360 90 Bicantellated 5-simplex verf.png Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
- 3-3 duoprism.png
{3}×{3}
- Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
15 (0,0,1,2,3,3) Bicantitruncated 5-simplex
great birhombated dodecateron (gibrid)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
32 180 420 450 180 Bicanitruncated 5-simplex verf.png Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
- 3-3 duoprism.png
{3}×{3}
- Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
16 (0,1,1,1,1,2) Stericated 5-simplex
small cellated dodecateron (scad)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
62 180 210 120 30 Stericated hexateron verf.png
Irr.16-cell
Schlegel wireframe 5-cell.png
{3,3,3}
Tetrahedral prism.png
{ }×{3,3}
3-3 duoprism.png
{3}×{3}
Tetrahedral prism.png
{ }×{3,3}
Schlegel wireframe 5-cell.png
{3,3,3}
17 (0,1,1,2,2,3) Stericantellated 5-simplex
small cellirhombated dodecateron (card)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
62 420 900 720 180 Stericantellated 5-simplex verf.png Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
Cuboctahedral prism.png
{ }×rr{3,3}
3-3 duoprism.png
{3}×{3}
Cuboctahedral prism.png
{ }×rr{3,3}
Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
18 (0,1,2,2,3,4) Steriruncitruncated 5-simplex
celliprismatotruncated dodecateron (captid)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
62 450 1110 1080 360 Steriruncitruncated 5-simplex verf.png Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
Tetrahedral prism.png
{ }×t{3,3}
6-6 duoprism.png
{6}×{6}
Tetrahedral prism.png
{ }×t{3,3}
Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
19 (0,1,2,3,4,5) Omnitruncated 5-simplex
great cellated dodecateron (gocad)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
62 540 1560 1800 720 Omnitruncated 5-simplex verf.png
Irr. {3,3,3}
Schlegel half-solid omnitruncated 5-cell.png
t0,1,2,3{3,3,3}
Truncated octahedral prism.png
{ }×tr{3,3}
6-6 duoprism.png
{6}×{6}
Truncated octahedral prism.png
{ }×tr{3,3}
Schlegel half-solid omnitruncated 5-cell.png
t0,1,2,3{3,3,3}
Nonuniform Omnisnub 5-simplex
snub dodecateron (snod)
snub hexateron (snix)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
422 2340 4080 2520 360 ht0,1,2,3{3,3,3} ht0,1,2,3{3,3,2} ht0,1,2,3{3,2,3} ht0,1,2,3{3,3,2} ht0,1,2,3{3,3,3} (360)
Schlegel wireframe 5-cell.png
Irr. {3,3,3}

The B5 family

The B5 family has symmetry of order 3840 (5!×25).

This family has 25−1=31 Wythoffian uniform polytopes generated by marking one or more nodes of the Coxeter diagram. Also added are 8 uniform polytopes generated as alternations with half the symmetry, which form a complete duplicate of the D5 family as CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.png... = CDel nodes 10ru.pngCDel split2.png..... (There are more alternations that are not listed because they produce only repetitions, as CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.png... = CDel nodes 11.pngCDel split2.png.... and CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.png... = CDel nodes.pngCDel split2.png.... These would give a complete duplication of the uniform 5-polytopes numbered 20 through 34 with symmetry broken in half.)

For simplicity it is divided into two subgroups, each with 12 forms, and 7 "middle" forms which equally belong in both.

The 5-cube family of 5-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 5-polytope. All coordinates correspond with uniform 5-polytopes of edge length 2.

# Base point Name
Coxeter diagram
Element counts Vertex
figure
Facet counts by location: [4,3,3,3]
4 3 2 1 0 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[4,3,3]
(10)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
[4,3,2]
(40)
CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
[4,2,3]
(80)
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[2,3,3]
(80)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(32)
Alt
20 (0,0,0,0,1)√2 5-orthoplex
triacontaditeron (tac)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
32 80 80 40 10 Pentacross verf.png
{3,3,4}
- - - - 60px
{3,3,3}
21 (0,0,0,1,1)√2 Rectified 5-orthoplex
rectified triacontaditeron (rat)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
42 240 400 240 40 Rectified pentacross verf.png
{ }×{3,4}
60px
{3,3,4}
- - - 60px
r{3,3,3}
22 (0,0,0,1,2)√2 Truncated 5-orthoplex
truncated triacontaditeron (tot)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
42 240 400 280 80 Truncated pentacross.png
(Octah.pyr)
60px
{3,3,4}
- - - 60px
t{3,3,3}
23 (0,0,1,1,1)√2 Birectified 5-cube
penteractitriacontaditeron (nit)
(Birectified 5-orthoplex)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
42 280 640 480 80 Birectified penteract verf.png
{4}×{3}
60px
r{3,3,4}
- - - 60px
r{3,3,3}
24 (0,0,1,1,2)√2 Cantellated 5-orthoplex
small rhombated triacontaditeron (sart)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
82 640 1520 1200 240 Cantellated pentacross verf.png
Prism-wedge
60px
r{3,3,4}
60px
{ }×{3,4}
- - 60px
rr{3,3,3}
25 (0,0,1,2,2)√2 Bitruncated 5-orthoplex
bitruncated triacontaditeron (bittit)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
42 280 720 720 240 Bitruncated pentacross verf.png 60px
t{3,3,4}
- - - Schlegel half-solid bitruncated 5-cell.png
2t{3,3,3}
26 (0,0,1,2,3)√2 Cantitruncated 5-orthoplex
great rhombated triacontaditeron (gart)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
82 640 1520 1440 480 Canitruncated 5-orthoplex verf.png 60px
t{3,3,4}
60px
{ }×{3,4}
- - Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
27 (0,1,1,1,1)√2 Rectified 5-cube
rectified penteract (rin)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
42 200 400 320 80 Rectified 5-cube verf.png
{3,3}×{ }
60px
r{4,3,3}
- - - 60px
{3,3,3}
28 (0,1,1,1,2)√2 Runcinated 5-orthoplex
small prismated triacontaditeron (spat)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
162 1200 2160 1440 320 Runcinated pentacross verf.png 60px
r{4,3,3}
60px
{ }×r{3,4}
60px
{3}×{4}
60px
t0,3{3,3,3}
29 (0,1,1,2,2)√2 Bicantellated 5-cube
small birhombated penteractitriacontaditeron (sibrant)
(Bicantellated 5-orthoplex)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
122 840 2160 1920 480 Bicantellated penteract verf.png 60px
rr{3,3,4}
- 60px
{4}×{3}
- 60px
rr{3,3,3}
30 (0,1,1,2,3)√2 Runcitruncated 5-orthoplex
prismatotruncated triacontaditeron (pattit)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
162 1440 3680 3360 960 Runcitruncated 5-orthoplex verf.png 60px
rr{3,3,4}
60px
{ }×r{3,4}
60px
{6}×{4}
- Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
31 (0,1,2,2,2)√2 Bitruncated 5-cube
bitruncated penteract (bittin)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
42 280 720 800 320 Bitruncated penteract verf.png 60px
2t{4,3,3}
- - - 60px
t{3,3,3}
32 (0,1,2,2,3)√2 Runcicantellated 5-orthoplex
prismatorhombated triacontaditeron (pirt)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
162 1200 2960 2880 960 Runcicantellated 5-orthoplex verf.png 60px
2t{4,3,3}
60px
{ }×t{3,4}
60px
{3}×{4}
- Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
33 (0,1,2,3,3)√2 Bicantitruncated 5-cube
great birhombated triacontaditeron (gibrant)
(Bicantitruncated 5-orthoplex)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
122 840 2160 2400 960 Bicantellated penteract verf.png 60px
tr{3,3,4}
- 60px
{4}×{3}
- 60px
rr{3,3,3}
34 (0,1,2,3,4)√2 Runcicantitruncated 5-orthoplex
great prismated triacontaditeron (gippit)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
162 1440 4160 4800 1920 Runcicantitruncated 5-orthoplex verf.png 60px
tr{3,3,4}
60px
{ }×t{3,4}
60px
{6}×{4}
- Schlegel half-solid omnitruncated 5-cell.png
t0,1,2,3{3,3,3}
35 (1,1,1,1,1) 5-cube
penteract (pent)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
10 40 80 80 32 5-cube verf.png
{3,3,3}
60px
{4,3,3}
- - - -
36 (1,1,1,1,1)
+ (0,0,0,0,1)√2
Stericated 5-cube
small cellated penteractitriacontaditeron (scant)
(Stericated 5-orthoplex)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
242 800 1040 640 160 Stericated penteract verf.png
Tetr.antiprm
60px
{4,3,3}
60px
{4,3}×{ }
60px
{4}×{3}
60px
{ }×{3,3}
60px
{3,3,3}
37 (1,1,1,1,1)
+ (0,0,0,1,1)√2
Runcinated 5-cube
small prismated penteract (span)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
202 1240 2160 1440 320 Runcinated penteract verf.png 60px
t0,3{4,3,3}
- 60px
{4}×{3}
60px
{ }×r{3,3}
60px
r{3,3,3}
38 (1,1,1,1,1)
+ (0,0,0,1,2)√2
Steritruncated 5-orthoplex
celliprismated triacontaditeron (cappin)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
242 1520 2880 2240 640 Steritruncated 5-orthoplex verf.png 60px
t0,3{4,3,3}
60px
{4,3}×{ }
60px
{6}×{4}
60px
{ }×t{3,3}
60px
t{3,3,3}
39 (1,1,1,1,1)
+ (0,0,1,1,1)√2
Cantellated 5-cube
small rhombated penteract (sirn)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
122 680 1520 1280 320 Cantellated 5-cube vertf.png
Prism-wedge
60px
rr{4,3,3}
- - 60px
{ }×{3,3}
60px
r{3,3,3}
40 (1,1,1,1,1)
+ (0,0,1,1,2)√2
Stericantellated 5-cube
cellirhombated penteractitriacontaditeron (carnit)
(Stericantellated 5-orthoplex)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
242 2080 4720 3840 960 Stericantellated 5-orthoplex verf.png 60px
rr{4,3,3}
60px
rr{4,3}×{ }
60px
{4}×{3}
60px
{ }×rr{3,3}
60px
rr{3,3,3}
41 (1,1,1,1,1)
+ (0,0,1,2,2)√2
Runcicantellated 5-cube
prismatorhombated penteract (prin)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
202 1240 2960 2880 960 Runcicantellated 5-cube verf.png 60px
t0,2,3{4,3,3}
- 60px
{4}×{3}
60px
{ }×t{3,3}
Schlegel half-solid bitruncated 5-cell.png
2t{3,3,3}
42 (1,1,1,1,1)
+ (0,0,1,2,3)√2
Stericantitruncated 5-orthoplex
celligreatorhombated triacontaditeron (cogart)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
242 2320 5920 5760 1920 Stericanitruncated 5-orthoplex verf.png 60px
t0,2,3{4,3,3}
60px
rr{4,3}×{ }
60px
{6}×{4}
60px
{ }×tr{3,3}
Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
43 (1,1,1,1,1)
+ (0,1,1,1,1)√2
Truncated 5-cube
truncated penteract (tan)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
42 200 400 400 160 Truncated 5-cube verf.png
Tetrah.pyr
60px
t{4,3,3}
- - - 60px
{3,3,3}
44 (1,1,1,1,1)
+ (0,1,1,1,2)√2
Steritruncated 5-cube
celliprismated triacontaditeron (capt)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
242 1600 2960 2240 640 Steritruncated 5-cube verf.png 60px
t{4,3,3}
60px
t{4,3}×{ }
60px
{8}×{3}
60px
{ }×{3,3}
60px
t0,3{3,3,3}
45 (1,1,1,1,1)
+ (0,1,1,2,2)√2
Runcitruncated 5-cube
prismatotruncated penteract (pattin)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
202 1560 3760 3360 960 Runcitruncated 5-cube verf.png 60px
t0,1,3{4,3,3}
- 60px
{8}×{3}
60px
{ }×r{3,3}
60px
rr{3,3,3}
46 (1,1,1,1,1)
+ (0,1,1,2,3)√2
Steriruncitruncated 5-cube
celliprismatotruncated penteractitriacontaditeron (captint)
(Steriruncitruncated 5-orthoplex)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
242 2160 5760 5760 1920 Steriruncitruncated 5-cube verf.png 60px
t0,1,3{4,3,3}
60px
t{4,3}×{ }
60px
{8}×{6}
60px
{ }×t{3,3}
Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
47 (1,1,1,1,1)
+ (0,1,2,2,2)√2
Cantitruncated 5-cube
great rhombated penteract (girn)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
122 680 1520 1600 640 Canitruncated 5-cube verf.png 60px
tr{4,3,3}
- - 60px
{ }×{3,3}
60px
t{3,3,3}
48 (1,1,1,1,1)
+ (0,1,2,2,3)√2
Stericantitruncated 5-cube
celligreatorhombated penteract (cogrin)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
242 2400 6000 5760 1920 Stericanitruncated 5-cube verf.png 60px
tr{4,3,3}
60px
tr{4,3}×{ }
60px
{8}×{3}
60px
{ }×rr{3,3}
Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
49 (1,1,1,1,1)
+ (0,1,2,3,3)√2
Runcicantitruncated 5-cube
great prismated penteract (gippin)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
202 1560 4240 4800 1920 Runcicantitruncated 5-cube verf.png 60px
t0,1,2,3{4,3,3}
- 60px
{8}×{3}
60px
{ }×t{3,3}
Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
50 (1,1,1,1,1)
+ (0,1,2,3,4)√2
Omnitruncated 5-cube
great cellated penteractitriacontaditeron (gacnet)
(omnitruncated 5-orthoplex)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
242 2640 8160 9600 3840 Omnitruncated 5-cube verf.png
Irr. {3,3,3}
60px
tr{4,3}×{ }
60px
tr{4,3}×{ }
60px
{8}×{6}
60px
{ }×tr{3,3}
Schlegel half-solid omnitruncated 5-cell.png
t0,1,2,3{3,3,3}
51 5-demicube
hemipenteract (hin)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
26 120 160 80 16 Demipenteract verf.png
r{3,3,3}
Schlegel wireframe 16-cell.png
h{4,3,3}
- - - - (16)
Schlegel wireframe 5-cell.png
{3,3,3}
52 Cantic 5-cube
Truncated hemipenteract (thin)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
42 280 640 560 160 Truncated 5-demicube verf.png Schlegel half-solid truncated 16-cell.png
h2{4,3,3}
- - - (16)
Schlegel half-solid rectified 5-cell.png
r{3,3,3}
(16)
Schlegel half-solid truncated pentachoron.png
t{3,3,3}
53 Runcic 5-cube
Small rhombated hemipenteract (sirhin)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
42 360 880 720 160 Schlegel half-solid rectified 8-cell.png
h3{4,3,3}
- - - (16)
Schlegel half-solid rectified 5-cell.png
r{3,3,3}
(16)
Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
54 Steric 5-cube
Small prismated hemipenteract (siphin)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
82 480 720 400 80 Schlegel wireframe 16-cell.png
h{4,3,3}
Tetrahedral prism.png
h{4,3}×{}
- - (16)
Schlegel wireframe 5-cell.png
{3,3,3}
(16)
Schlegel half-solid runcinated 5-cell.png
t0,3{3,3,3}
55 Runcicantic 5-cube
Great rhombated hemipenteract (girhin)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
42 360 1040 1200 480 Schlegel half-solid bitruncated 8-cell.png
h2,3{4,3,3}
- - - (16)
Schlegel half-solid bitruncated 5-cell.png
2t{3,3,3}
(16)
Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
56 Stericantic 5-cube
Prismatotruncated hemipenteract (pithin)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
82 720 1840 1680 480 Schlegel half-solid truncated 16-cell.png
h2{4,3,3}
Truncated tetrahedral prism.png
h2{4,3}×{}
- - (16)
Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
(16)
Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
57 Steriruncic 5-cube
Prismatorhombated hemipenteract (pirhin)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
82 560 1280 1120 320 Schlegel half-solid rectified 8-cell.png
h3{4,3,3}
Tetrahedral prism.png
h{4,3}×{}
- - (16)
Schlegel half-solid truncated pentachoron.png
t{3,3,3}
(16)
Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
58 Steriruncicantic 5-cube
Great prismated hemipenteract (giphin)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
82 720 2080 2400 960 Schlegel half-solid bitruncated 8-cell.png
h2,3{4,3,3}
Truncated tetrahedral prism.png
h2{4,3}×{}
- - (16)
Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
(16)
Schlegel half-solid omnitruncated 5-cell.png
t0,1,2,3{3,3,3}
Nonuniform Alternated runcicantitruncated 5-orthoplex
Snub prismatotriacontaditeron (snippit)
Snub hemipenteract (snahin)
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
1122 6240 10880 6720 960 Schlegel half-solid alternated cantitruncated 16-cell.png
sr{3,3,4}
sr{2,3,4} sr{3,2,4} - ht0,1,2,3{3,3,3} (960)
Schlegel wireframe 5-cell.png
Irr. {3,3,3}
Nonuniform Edge-snub 5-orthoplex
Pyritosnub penteract (pysnan)
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
1202 7920 15360 10560 1920 sr3{3,3,4} sr3{2,3,4} sr3{3,2,4} Icosahedral prism.png
s{3,3}×{ }
ht0,1,2,3{3,3,3} (960)
Tetrahedral prism.png
Irr. {3,3}×{ }
Nonuniform Snub 5-cube
Snub penteract (snan)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
2162 12240 21600 13440 960 ht0,1,2,3{3,3,4} ht0,1,2,3{2,3,4} ht0,1,2,3{3,2,4} ht0,1,2,3{3,3,2} ht0,1,2,3{3,3,3} (1920)
Schlegel wireframe 5-cell.png
Irr. {3,3,3}

The D5 family

The D5 family has symmetry of order 1920 (5! x 24).

This family has 23 Wythoffian uniform polytopes, from 3×8-1 permutations of the D5 Coxeter diagram with one or more rings. 15 (2×8-1) are repeated from the B5 family and 8 are unique to this family, though even those 8 duplicate the alternations from the B5 family.

In the 15 repeats, both of the nodes terminating the length-1 branches are ringed, so the two kinds of CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png element are identical and the symmetry doubles: the relations are CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.png... = CDel nodes 11.pngCDel split2.png.... and CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.png... = CDel nodes.pngCDel split2.png..., creating a complete duplication of the uniform 5-polytopes 20 through 34 above. The 8 new forms have one such node ringed and one not, with the relation CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.png... = CDel nodes 10ru.pngCDel split2.png... duplicating uniform 5-polytopes 51 through 58 above.

# Coxeter diagram
Schläfli symbol symbols
Johnson and Bowers names
Element counts Vertex
figure
Facets by location: CD B5 nodes.png [31,2,1]
4 3 2 1 0 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(16)
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
[31,1,1]
(10)
CDel nodes.pngCDel split2.pngCDel node.pngCDel 2.pngCDel node.png
[3,3]×[ ]
(40)
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
[ ]×[3]×[ ]
(80)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(16)
Alt
[51] CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
h{4,3,3,3}, 5-demicube
Hemipenteract (hin)
26 120 160 80 16 Demipenteract verf.png
r{3,3,3}
Schlegel wireframe 5-cell.png
{3,3,3}
Schlegel wireframe 16-cell.png
h{4,3,3}
- - -
[52] CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
h2{4,3,3,3}, cantic 5-cube
Truncated hemipenteract (thin)
42 280 640 560 160 Truncated 5-demicube verf.png Schlegel half-solid truncated pentachoron.png
t{3,3,3}
Schlegel half-solid truncated 16-cell.png
h2{4,3,3}
- - Schlegel half-solid rectified 5-cell.png
r{3,3,3}
[53] CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
h3{4,3,3,3}, runcic 5-cube
Small rhombated hemipenteract (sirhin)
42 360 880 720 160 Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
Schlegel half-solid rectified 8-cell.png
h3{4,3,3}
- - Schlegel half-solid rectified 5-cell.png
r{3,3,3}
[54] CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
h4{4,3,3,3}, steric 5-cube
Small prismated hemipenteract (siphin)
82 480 720 400 80 Schlegel half-solid runcinated 5-cell.png
t0,3{3,3,3}
Schlegel wireframe 16-cell.png
h{4,3,3}
Tetrahedral prism.png
h{4,3}×{}
- Schlegel wireframe 5-cell.png
{3,3,3}
[55] CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
h2,3{4,3,3,3}, runcicantic 5-cube
Great rhombated hemipenteract (girhin)
42 360 1040 1200 480 Schlegel half-solid bitruncated 5-cell.png
2t{3,3,3}
Schlegel half-solid bitruncated 8-cell.png
h2,3{4,3,3}
- - Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
[56] CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
h2,4{4,3,3,3}, stericantic 5-cube
Prismatotruncated hemipenteract (pithin)
82 720 1840 1680 480 Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
Schlegel half-solid truncated 16-cell.png
h2{4,3,3}
Truncated tetrahedral prism.png
h2{4,3}×{}
- Schlegel half-solid cantellated 5-cell.png
rr{3,3,3}
[57] CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h3,4{4,3,3,3}, steriruncic 5-cube
Prismatorhombated hemipenteract (pirhin)
82 560 1280 1120 320 Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
Schlegel half-solid rectified 8-cell.png
h3{4,3,3}
Tetrahedral prism.png
h{4,3}×{}
- Schlegel half-solid truncated pentachoron.png
t{3,3,3}
[58] CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h2,3,4{4,3,3,3}, steriruncicantic 5-cube
Great prismated hemipenteract (giphin)
82 720 2080 2400 960 Schlegel half-solid omnitruncated 5-cell.png
t0,1,2,3{3,3,3}
Schlegel half-solid bitruncated 8-cell.png
h2,3{4,3,3}
Truncated tetrahedral prism.png
h2{4,3}×{}
- Schlegel half-solid cantitruncated 5-cell.png
tr{3,3,3}
Nonuniform CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{3,3,3,4}, alternated runcicantitruncated 5-orthoplex
Snub hemipenteract (snahin)
1122 6240 10880 6720 960 ht0,1,2,3{3,3,3} Schlegel half-solid alternated cantitruncated 16-cell.png
sr{3,3,4}
sr{2,3,4} sr{3,2,4} ht0,1,2,3{3,3,3} (960)
Schlegel wireframe 5-cell.png
Irr. {3,3,3}

Uniform prismatic forms

There are 5 finite categorical uniform prismatic families of polytopes based on the nonprismatic uniform 4-polytopes. For simplicity, most alternations are not shown.

A4 × A1

This prismatic family has 9 forms:

The A1 x A4 family has symmetry of order 240 (2*5!).

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
59 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = {3,3,3}×{ }
5-cell prism (penp)
7 20 30 25 10
60 CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{3,3,3}×{ }
Rectified 5-cell prism (rappip)
12 50 90 70 20
61 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = t{3,3,3}×{ }
Truncated 5-cell prism (tippip)
12 50 100 100 40
62 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = rr{3,3,3}×{ }
Cantellated 5-cell prism (srippip)
22 120 250 210 60
63 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,3{3,3,3}×{ }
Runcinated 5-cell prism (spiddip)
32 130 200 140 40
64 CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = 2t{3,3,3}×{ }
Bitruncated 5-cell prism (decap)
12 60 140 150 60
65 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = tr{3,3,3}×{ }
Cantitruncated 5-cell prism (grippip)
22 120 280 300 120
66 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{3,3,3}×{ }
Runcitruncated 5-cell prism (prippip)
32 180 390 360 120
67 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,2,3{3,3,3}×{ }
Omnitruncated 5-cell prism (gippiddip)
32 210 540 600 240

B4 × A1

This prismatic family has 16 forms. (Three are shared with [3,4,3]×[ ] family)

The A1×B4 family has symmetry of order 768 (254!).

The last three snubs can be realised with equal-length edges, but turn out nonuniform anyway because some of their 4-faces are not uniform 4-polytopes.

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
[16] CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = {4,3,3}×{ }
Tesseractic prism (pent)
(Same as 5-cube)
10 40 80 80 32
68 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{4,3,3}×{ }
Rectified tesseractic prism (rittip)
26 136 272 224 64
69 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = t{4,3,3}×{ }
Truncated tesseractic prism (tattip)
26 136 304 320 128
70 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = rr{4,3,3}×{ }
Cantellated tesseractic prism (srittip)
58 360 784 672 192
71 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,3{4,3,3}×{ }
Runcinated tesseractic prism (sidpithip)
82 368 608 448 128
72 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = 2t{4,3,3}×{ }
Bitruncated tesseractic prism (tahp)
26 168 432 480 192
73 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = tr{4,3,3}×{ }
Cantitruncated tesseractic prism (grittip)
58 360 880 960 384
74 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{4,3,3}×{ }
Runcitruncated tesseractic prism (prohp)
82 528 1216 1152 384
75 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,2,3{4,3,3}×{ }
Omnitruncated tesseractic prism (gidpithip)
82 624 1696 1920 768
76 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = {3,3,4}×{ }
16-cell prism (hexip)
18 64 88 56 16
77 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{3,3,4}×{ }
Rectified 16-cell prism (icope)
(Same as 24-cell prism)
26 144 288 216 48
78 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t{3,3,4}×{ }
Truncated 16-cell prism (thexip)
26 144 312 288 96
79 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = rr{3,3,4}×{ }
Cantellated 16-cell prism (ricope)
(Same as rectified 24-cell prism)
50 336 768 672 192
80 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = tr{3,3,4}×{ }
Cantitruncated 16-cell prism (ticope)
(Same as truncated 24-cell prism)
50 336 864 960 384
81 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{3,3,4}×{ }
Runcitruncated 16-cell prism (prittip)
82 528 1216 1152 384
82 CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png = sr{3,3,4}×{ }
snub 24-cell prism (sadip)
146 768 1392 960 192
Nonuniform CDel node h.pngCDel 2x.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
rectified tesseractic alterprism (rita)
50 288 464 288 64
Nonuniform CDel node h.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
truncated 16-cell alterprism (thexa)
26 168 384 336 96
Nonuniform CDel node h.pngCDel 2x.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
bitruncated tesseractic alterprism (taha)
50 288 624 576 192

F4 × A1

This prismatic family has 10 forms.

The A1 x F4 family has symmetry of order 2304 (2*1152). Three polytopes 85, 86 and 89 (green background) have double symmetry [[3,4,3],2], order 4608. The last one, snub 24-cell prism, (blue background) has [3+,4,3,2] symmetry, order 1152.

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
[77] CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = {3,4,3}×{ }
24-cell prism (icope)
26 144 288 216 48
[79] CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{3,4,3}×{ }
rectified 24-cell prism (ricope)
50 336 768 672 192
[80] CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = t{3,4,3}×{ }
truncated 24-cell prism (ticope)
50 336 864 960 384
83 CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = rr{3,4,3}×{ }
cantellated 24-cell prism (sricope)
146 1008 2304 2016 576
84 CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,3{3,4,3}×{ }
runcinated 24-cell prism (spiccup)
242 1152 1920 1296 288
85 CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = 2t{3,4,3}×{ }
bitruncated 24-cell prism (contip)
50 432 1248 1440 576
86 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = tr{3,4,3}×{ }
cantitruncated 24-cell prism (gricope)
146 1008 2592 2880 1152
87 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{3,4,3}×{ }
runcitruncated 24-cell prism (pricope)
242 1584 3648 3456 1152
88 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,2,3{3,4,3}×{ }
omnitruncated 24-cell prism (gippiccup)
242 1872 5088 5760 2304
[82] CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = s{3,4,3}×{ }
snub 24-cell prism (sadip)
146 768 1392 960 192

H4 × A1

This prismatic family has 15 forms:

The A1 x H4 family has symmetry of order 28800 (2*14400).

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
89 CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = {5,3,3}×{ }
120-cell prism (hipe)
122 960 2640 3000 1200
90 CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{5,3,3}×{ }
Rectified 120-cell prism (rahipe)
722 4560 9840 8400 2400
91 CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = t{5,3,3}×{ }
Truncated 120-cell prism (thipe)
722 4560 11040 12000 4800
92 CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = rr{5,3,3}×{ }
Cantellated 120-cell prism (srahip)
1922 12960 29040 25200 7200
93 CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,3{5,3,3}×{ }
Runcinated 120-cell prism (sidpixhip)
2642 12720 22080 16800 4800
94 CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = 2t{5,3,3}×{ }
Bitruncated 120-cell prism (xhip)
722 5760 15840 18000 7200
95 CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = tr{5,3,3}×{ }
Cantitruncated 120-cell prism (grahip)
1922 12960 32640 36000 14400
96 CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{5,3,3}×{ }
Runcitruncated 120-cell prism (prixip)
2642 18720 44880 43200 14400
97 CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,2,3{5,3,3}×{ }
Omnitruncated 120-cell prism (gidpixhip)
2642 22320 62880 72000 28800
98 CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = {3,3,5}×{ }
600-cell prism (exip)
602 2400 3120 1560 240
99 CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{3,3,5}×{ }
Rectified 600-cell prism (roxip)
722 5040 10800 7920 1440
100 CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t{3,3,5}×{ }
Truncated 600-cell prism (texip)
722 5040 11520 10080 2880
101 CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = rr{3,3,5}×{ }
Cantellated 600-cell prism (srixip)
1442 11520 28080 25200 7200
102 CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = tr{3,3,5}×{ }
Cantitruncated 600-cell prism (grixip)
1442 11520 31680 36000 14400
103 CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{3,3,5}×{ }
Runcitruncated 600-cell prism (prahip)
2642 18720 44880 43200 14400

Duoprism prisms

Uniform duoprism prisms, {p}×{q}×{ }, form an infinite class for all integers p,q>2. {4}×{4}×{ } makes a lower symmetry form of the 5-cube.

The extended f-vector of {p}×{q}×{ } is computed as (p,p,1)*(q,q,1)*(2,1) = (2pq,5pq,4pq+2p+2q,3pq+3p+3q,p+q+2,1).

Coxeter diagram Names Element counts
4-faces Cells Faces Edges Vertices
CDel branch 10.pngCDel labelp.pngCDel 2.pngCDel branch 10.pngCDel labelq.pngCDel 2.pngCDel node 1.png {p}×{q}×{ }[9] p+q+2 3pq+3p+3q 4pq+2p+2q 5pq 2pq
CDel branch 10.pngCDel labelp.pngCDel 2.pngCDel branch 10.pngCDel labelp.pngCDel 2.pngCDel node 1.png {p}2×{ } 2(p+1) 3p(p+1) 4p(p+1) 5p2 2p2
CDel branch 10.pngCDel 2.pngCDel branch 10.pngCDel 2.pngCDel node 1.png {3}2×{ } 8 36 48 45 18
CDel branch 10.pngCDel label4.pngCDel 2.pngCDel branch 10.pngCDel label4.pngCDel 2.pngCDel node 1.png {4}2×{ } = 5-cube 10 40 80 80 32

Grand antiprism prism

The grand antiprism prism is the only known convex non-Wythoffian uniform 5-polytope. It has 200 vertices, 1100 edges, 1940 faces (40 pentagons, 500 squares, 1400 triangles), 1360 cells (600 tetrahedra, 40 pentagonal antiprisms, 700 triangular prisms, 20 pentagonal prisms), and 322 hypercells (2 grand antiprisms Grand antiprism.png, 20 pentagonal antiprism prisms 50px, and 300 tetrahedral prisms Tetrahedral prism.png).

# Name Element counts
Facets Cells Faces Edges Vertices
104 grand antiprism prism (gappip)[10] 322 1360 1940 1100 200

Notes on the Wythoff construction for the uniform 5-polytopes

Construction of the reflective 5-dimensional uniform polytopes are done through a Wythoff construction process, and represented through a Coxeter diagram, where each node represents a mirror. Nodes are ringed to imply which mirrors are active. The full set of uniform polytopes generated are based on the unique permutations of ringed nodes. Uniform 5-polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may have two ways of naming them.

Here are the primary operators available for constructing and naming the uniform 5-polytopes.

The last operation, the snub, and more generally the alternation, are the operation that can create nonreflective forms. These are drawn with "hollow rings" at the nodes.

The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.

Operation Extended
Schläfli symbol
Coxeter diagram Description
Parent t0{p,q,r,s} {p,q,r,s} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Any regular 5-polytope
Rectified t1{p,q,r,s} r{p,q,r,s} CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png The edges are fully truncated into single points. The 5-polytope now has the combined faces of the parent and dual.
Birectified t2{p,q,r,s} 2r{p,q,r,s} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Birectification reduces faces to points, cells to their duals.
Trirectified t3{p,q,r,s} 3r{p,q,r,s} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node.png Trirectification reduces cells to points. (Dual rectification)
Quadrirectified t4{p,q,r,s} 4r{p,q,r,s} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node 1.png Quadrirectification reduces 4-faces to points. (Dual)
Truncated t0,1{p,q,r,s} t{p,q,r,s} CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 5-polytope. The 5-polytope has its original faces doubled in sides, and contains the faces of the dual.
Cube truncation sequence.svg
Cantellated t0,2{p,q,r,s} rr{p,q,r,s} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place.
Cube cantellation sequence.svg
Runcinated t0,3{p,q,r,s} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node.png Runcination reduces cells and creates new cells at the vertices and edges.
Stericated t0,4{p,q,r,s} 2r2r{p,q,r,s} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node 1.png Sterication reduces facets and creates new facets (hypercells) at the vertices and edges in the gaps. (Same as expansion operation for 5-polytopes.)
Omnitruncated t0,1,2,3,4{p,q,r,s} CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node 1.png All four operators, truncation, cantellation, runcination, and sterication are applied.
Half h{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png Alternation, same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Cantic h2{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Runcic h3{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.png
Runcicantic h2,3{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.png
Steric h4{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.png
Steriruncic h3,4{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.png
Stericantic h2,4{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.png
Steriruncicantic h2,3,4{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.png
Snub s{p,2q,r,s} CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Alternated truncation
Snub rectified sr{p,q,2r,s} CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel 2x.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Alternated truncated rectification
ht0,1,2,3{p,q,r,s} CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel r.pngCDel node h.pngCDel 2x.pngCDel s.pngCDel node.png Alternated runcicantitruncation
Full snub ht0,1,2,3,4{p,q,r,s} CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel r.pngCDel node h.pngCDel s.pngCDel node h.png Alternated omnitruncation

Regular and uniform honeycombs

Coxeter diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.

There are five fundamental affine Coxeter groups, and 13 prismatic groups that generate regular and uniform tessellations in Euclidean 4-space.[11][12]

Fundamental groups
# Coxeter group Coxeter diagram Forms
1 [math]\displaystyle{ {\tilde{A}}_4 }[/math] [3[5]] [(3,3,3,3,3)] CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png 7
2 [math]\displaystyle{ {\tilde{C}}_4 }[/math] [4,3,3,4] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 19
3 [math]\displaystyle{ {\tilde{B}}_4 }[/math] [4,3,31,1] [4,3,3,4,1+] CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 23 (8 new)
4 [math]\displaystyle{ {\tilde{D}}_4 }[/math] [31,1,1,1] [1+,4,3,3,4,1+] CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png 9 (0 new)
5 [math]\displaystyle{ {\tilde{F}}_4 }[/math] [3,4,3,3] CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 31 (21 new)

There are three regular honeycombs of Euclidean 4-space:

Other families that generate uniform honeycombs:

  • There are 23 uniquely ringed forms, 8 new ones in the 16-cell honeycomb family. With symbols h{4,32,4} it is geometrically identical to the 16-cell honeycomb, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png = CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
  • There are 7 uniquely ringed forms from the [math]\displaystyle{ {\tilde{A}}_4 }[/math], CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png family, all new, including:
    • 4-simplex honeycomb CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png
    • Truncated 4-simplex honeycomb CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
    • Omnitruncated 4-simplex honeycomb CDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png
  • There are 9 uniquely ringed forms in the [math]\displaystyle{ {\tilde{D}}_4 }[/math]: [31,1,1,1] CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png family, two new ones, including the quarter tesseractic honeycomb, CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png, and the bitruncated tesseractic honeycomb, CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png.

Non-Wythoffian uniform tessellations in 4-space also exist by elongation (inserting layers), and gyration (rotating layers) from these reflective forms.

Prismatic groups
# Coxeter group Coxeter diagram
1 [math]\displaystyle{ {\tilde{C}}_3 }[/math]×[math]\displaystyle{ {\tilde{I}}_1 }[/math] [4,3,4,2,∞] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
2 [math]\displaystyle{ {\tilde{B}}_3 }[/math]×[math]\displaystyle{ {\tilde{I}}_1 }[/math] [4,31,1,2,∞] CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel 4a.pngCDel nodea.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
3 [math]\displaystyle{ {\tilde{A}}_3 }[/math]×[math]\displaystyle{ {\tilde{I}}_1 }[/math] [3[4],2,∞] CDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
4 [math]\displaystyle{ {\tilde{C}}_2 }[/math]×[math]\displaystyle{ {\tilde{I}}_1 }[/math]x[math]\displaystyle{ {\tilde{I}}_1 }[/math] [4,4,2,∞,2,∞] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
5 [math]\displaystyle{ {\tilde{H}}_2 }[/math]×[math]\displaystyle{ {\tilde{I}}_1 }[/math]x[math]\displaystyle{ {\tilde{I}}_1 }[/math] [6,3,2,∞,2,∞] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
6 [math]\displaystyle{ {\tilde{A}}_2 }[/math]×[math]\displaystyle{ {\tilde{I}}_1 }[/math]x[math]\displaystyle{ {\tilde{I}}_1 }[/math] [3[3],2,∞,2,∞] CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
7 [math]\displaystyle{ {\tilde{I}}_1 }[/math]×[math]\displaystyle{ {\tilde{I}}_1 }[/math]x[math]\displaystyle{ {\tilde{I}}_1 }[/math]x[math]\displaystyle{ {\tilde{I}}_1 }[/math] [∞,2,∞,2,∞,2,∞] CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
8 [math]\displaystyle{ {\tilde{A}}_2 }[/math]x[math]\displaystyle{ {\tilde{A}}_2 }[/math] [3[3],2,3[3]] CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel split1.pngCDel branch.png
9 [math]\displaystyle{ {\tilde{A}}_2 }[/math]×[math]\displaystyle{ {\tilde{B}}_2 }[/math] [3[3],2,4,4] CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
10 [math]\displaystyle{ {\tilde{A}}_2 }[/math]×[math]\displaystyle{ {\tilde{G}}_2 }[/math] [3[3],2,6,3] CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
11 [math]\displaystyle{ {\tilde{B}}_2 }[/math]×[math]\displaystyle{ {\tilde{B}}_2 }[/math] [4,4,2,4,4] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
12 [math]\displaystyle{ {\tilde{B}}_2 }[/math]×[math]\displaystyle{ {\tilde{G}}_2 }[/math] [4,4,2,6,3] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
13 [math]\displaystyle{ {\tilde{G}}_2 }[/math]×[math]\displaystyle{ {\tilde{G}}_2 }[/math] [6,3,2,6,3] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png

Regular and uniform hyperbolic honeycombs

Hyperbolic compact groups

There are 5 compact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in hyperbolic 4-space as permutations of rings of the Coxeter diagrams.

[math]\displaystyle{ {\widehat{AF}}_4 }[/math] = [(3,3,3,3,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

[math]\displaystyle{ {\bar{DH}}_4 }[/math] = [5,3,31,1]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

[math]\displaystyle{ {\bar{H}}_4 }[/math] = [3,3,3,5]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png

[math]\displaystyle{ {\bar{BH}}_4 }[/math] = [4,3,3,5]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[math]\displaystyle{ {\bar{K}}_4 }[/math] = [5,3,3,5]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png

There are 5 regular compact convex hyperbolic honeycombs in H4 space:[13]

Compact regular convex hyperbolic honeycombs
Honeycomb name Schläfli
Symbol
{p,q,r,s}
Coxeter diagram Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual
Order-5 5-cell (pente) {3,3,3,5} CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png {3,3,3} {3,3} {3} {5} {3,5} {3,3,5} {5,3,3,3}
Order-3 120-cell (hitte) {5,3,3,3} CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png {5,3,3} {5,3} {5} {3} {3,3} {3,3,3} {3,3,3,5}
Order-5 tesseractic (pitest) {4,3,3,5} CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png {4,3,3} {4,3} {4} {5} {3,5} {3,3,5} {5,3,3,4}
Order-4 120-cell (shitte) {5,3,3,4} CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {5,3,3} {5,3} {5} {4} {3,4} {3,3,4} {4,3,3,5}
Order-5 120-cell (phitte) {5,3,3,5} CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png {5,3,3} {5,3} {5} {5} {3,5} {3,3,5} Self-dual

There are also 4 regular compact hyperbolic star-honeycombs in H4 space:

Compact regular hyperbolic star-honeycombs
Honeycomb name Schläfli
Symbol
{p,q,r,s}
Coxeter diagram Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual
Order-3 small stellated 120-cell {5/2,5,3,3} CDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png {5/2,5,3} {5/2,5} {5} {5} {3,3} {5,3,3} {3,3,5,5/2}
Order-5/2 600-cell {3,3,5,5/2} CDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png {3,3,5} {3,3} {3} {5/2} {5,5/2} {3,5,5/2} {5/2,5,3,3}
Order-5 icosahedral 120-cell {3,5,5/2,5} CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.png {3,5,5/2} {3,5} {3} {5} {5/2,5} {5,5/2,5} {5,5/2,5,3}
Order-3 great 120-cell {5,5/2,5,3} CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node 1.png {5,5/2,5} {5,5/2} {5} {3} {5,3} {5/2,5,3} {3,5,5/2,5}
Hyperbolic paracompact groups

There are 9 paracompact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in 4-space as permutations of rings of the Coxeter diagrams. Paracompact groups generate honeycombs with infinite facets or vertex figures.

[math]\displaystyle{ {\bar{P}}_4 }[/math] = [3,3[4]]: CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

[math]\displaystyle{ {\bar{BP}}_4 }[/math] = [4,3[4]]: CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png
[math]\displaystyle{ {\bar{FR}}_4 }[/math] = [(3,3,4,3,4)]: CDel branch.pngCDel 4-4.pngCDel nodes.pngCDel split2.pngCDel node.png
[math]\displaystyle{ {\bar{DP}}_4 }[/math] = [3[3]×[]]: CDel node.pngCDel split1.pngCDel branchbranch.pngCDel split2.pngCDel node.png

[math]\displaystyle{ {\bar{N}}_4 }[/math] = [4,/3\,3,4]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[math]\displaystyle{ {\bar{O}}_4 }[/math] = [3,4,31,1]: CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
[math]\displaystyle{ {\bar{S}}_4 }[/math] = [4,32,1]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[math]\displaystyle{ {\bar{M}}_4 }[/math] = [4,31,1,1]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel split1.pngCDel nodes.png

[math]\displaystyle{ {\bar{R}}_4 }[/math] = [3,4,3,4]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

Notes

  1. T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  2. Multidimensional Glossary, George Olshevsky
  3. Bowers, Jonathan (2000). "Uniform Polychora". in Reza Sarhagi. Bridges Conference. pp. 239–246. https://archive.bridgesmathart.org/2000/bridges2000-239.pdf. 
  4. Uniform Polytera, Jonathan Bowers
  5. Uniform polytope
  6. ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, http://www.openproblemgarden.org/op/convex_uniform_5_polytopes, retrieved 2016-10-04 
  7. Regular and semi-regular polytopes III, p.315 Three finite groups of 5-dimensions
  8. Coxeter, Regular polytopes, §12.6 The number of reflections, equation 12.61
  9. "N,k-dippip". https://bendwavy.org/klitzing/incmats/n-m-dippip.htm. 
  10. "Gappip". https://bendwavy.org/klitzing/incmats/gappip.htm. 
  11. Regular polytopes, p.297. Table IV, Fundamental regions for irreducible groups generated by reflections.
  12. Regular and Semiregular polytopes, II, pp.298-302 Four-dimensional honeycombs
  13. Coxeter, The Beauty of Geometry: Twelve Essays, Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900 (3 regular and one semiregular 4-polytope)
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973 (p. 297 Fundamental regions for irreducible groups generated by reflections, Spherical and Euclidean)
    • H.S.M. Coxeter, The Beauty of Geometry: Twelve Essays (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591] (p. 287 5D Euclidean groups, p. 298 Four-dimensionsal honeycombs)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990) (Page 141, 6.9 List of hyperbolic Coxeter groups, figure 2) [2]

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family [math]\displaystyle{ {\tilde{A}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{C}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{B}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{D}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{G}}_2 }[/math] / [math]\displaystyle{ {\tilde{F}}_4 }[/math] / [math]\displaystyle{ {\tilde{E}}_{n-1} }[/math]
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21

eo:5-hiperpluredro