Abel's binomial theorem
From HandWiki
Short description: Mathematical identity involving sums of binomial coefficients
Abel's binomial theorem, named after Niels Henrik Abel, is a mathematical identity involving sums of binomial coefficients. It states the following:
- [math]\displaystyle{ \sum_{k=0}^m \binom{m}{k} (w+m-k)^{m-k-1}(z+k)^k=w^{-1}(z+w+m)^m. }[/math]
Example
The case m = 2
- [math]\displaystyle{ \begin{align} & {} \quad \binom{2}{0}(w+2)^1(z+0)^0+\binom{2}{1}(w+1)^0(z+1)^1+\binom{2}{2}(w+0)^{-1}(z+2)^2 \\ & = (w+2)+2(z+1)+\frac{(z+2)^2}{w} \\ & = \frac{(z+w+2)^2}{w}. \end{align} }[/math]
See also
References
- Weisstein, Eric W.. "Abel's binomial theorem". http://mathworld.wolfram.com/AbelsBinomialTheorem.html.
Original source: https://en.wikipedia.org/wiki/Abel's binomial theorem.
Read more |