Analytic combinatorics
Analytic combinatorics uses techniques from complex analysis to find asymptotic estimates for the coefficients of generating functions.[1][2][3]
History
One of the earliest uses of analytic techniques for an enumeration problem came from Srinivasa Ramanujan and G. H. Hardy's work on integer partitions,[4][5] starting in 1918, first using a Tauberian theorem and later the circle method.[6]
Walter Hayman's 1956 paper A Generalisation of Stirling's Formula is considered one of the earliest examples of the saddle-point method.[7][8][9]
In 1990, Philippe Flajolet and Andrew Odlyzko developed the theory of singularity analysis.[10]
In 2009, Philippe Flajolet and Robert Sedgewick wrote the book Analytic Combinatorics.
Some of the earliest work on multivariate generating functions started in the 1970s using probabilistic methods.[11][12]
Development of further multivariate techniques started in the early 2000s.[13]
Techniques
Meromorphic functions
If [math]\displaystyle{ h(z) = \frac{f(z)}{g(z)} }[/math] is a meromorphic function and [math]\displaystyle{ a }[/math] is its pole closest to the origin with order [math]\displaystyle{ m }[/math], then[14]
- [math]\displaystyle{ [z^n] h(z) \sim \frac{(-1)^m m f(a)}{a^m g^{(m)}(a)} \left( \frac{1}{a} \right)^n n^{m-1} \quad }[/math] as [math]\displaystyle{ n \to \infty }[/math]
Tauberian theorem
If
- [math]\displaystyle{ f(z) \sim \frac{1}{(1 - z)^\sigma} L(\frac{1}{1 - z}) \quad }[/math] as [math]\displaystyle{ z \to 1 }[/math]
where [math]\displaystyle{ \sigma \gt 0 }[/math] and [math]\displaystyle{ L }[/math] is a slowly varying function, then[15]
- [math]\displaystyle{ [z^n]f(z) \sim \frac{n^{\sigma-1}}{\Gamma(\sigma)} L(n) \quad }[/math] as [math]\displaystyle{ n \to \infty }[/math]
See also the Hardy–Littlewood Tauberian theorem.
Circle Method
For generating functions with logarithms or roots, which have branch singularities.[16]
Darboux's method
If we have a function [math]\displaystyle{ (1 - z)^\beta f(z) }[/math] where [math]\displaystyle{ \beta \notin \{0, 1, 2, \ldots\} }[/math] and [math]\displaystyle{ f(z) }[/math] has a radius of convergence greater than [math]\displaystyle{ 1 }[/math] and a Taylor expansion near 1 of [math]\displaystyle{ \sum_{j\geq0} f_j (1 - z)^j }[/math], then[17]
- [math]\displaystyle{ [z^n](1 - z)^\beta f(z) = \sum_{j=0}^m f_j \frac{n^{-\beta-j-1}}{\Gamma(-\beta-j)} + O(n^{-m-\beta-2}) }[/math]
See Szegő (1975) for a similar theorem dealing with multiple singularities.
Singularity analysis
If [math]\displaystyle{ f(z) }[/math] has a singularity at [math]\displaystyle{ \zeta }[/math] and
- [math]\displaystyle{ f(z) \sim \left(1 - \frac{z}{\zeta}\right)^\alpha \left(\frac{1}{\frac{z}{\zeta}}\log\frac{1}{1 - \frac{z}{\zeta}}\right)^\gamma \left(\frac{1}{\frac{z}{\zeta}}\log\left(\frac{1}{\frac{z}{\zeta}}\log\frac{1}{1 - \frac{z}{\zeta}}\right)\right)^\delta \quad }[/math] as [math]\displaystyle{ z \to \zeta }[/math]
where [math]\displaystyle{ \alpha \notin \{0, 1, 2, \cdots\}, \gamma, \delta \notin \{1, 2, \cdots\} }[/math] then[18]
- [math]\displaystyle{ [z^n]f(z) \sim \zeta^{-n} \frac{n^{-\alpha-1}}{\Gamma(-\alpha)} (\log n)^\gamma (\log\log n)^\delta \quad }[/math] as [math]\displaystyle{ n \to \infty }[/math]
Saddle-point method
For generating functions including entire functions which have no singularities.[19][20]
Intuitively, the biggest contribution to the contour integral is around the saddle point and estimating near the saddle-point gives us an estimate for the whole contour.
If [math]\displaystyle{ F(z) }[/math] is an admissible function,[21] then[22][23]
- [math]\displaystyle{ [z^n] F(z) \sim \frac{F(\zeta)}{\zeta^{n+1} \sqrt{2 \pi f^{''}(\zeta)}} \quad }[/math] as [math]\displaystyle{ n \to \infty }[/math]
where [math]\displaystyle{ F^'(\zeta) = 0 }[/math].
See also the method of steepest descent.
Notes
- ↑ Melczer 2021, pp. vii and ix.
- ↑ Pemantle and Wilson 2013, pp. xi.
- ↑ Flajolet and Sedgewick 2009, pp. ix.
- ↑ Melczer 2021, pp. vii.
- ↑ Pemantle and Wilson 2013, pp. 62-63.
- ↑ Pemantle and Wilson 2013, pp. 62.
- ↑ Pemantle and Wilson 2013, pp. 63.
- ↑ Wilf 2006, pp. 197.
- ↑ Flajolet and Sedgewick 2009, pp. 607.
- ↑ Flajolet and Sedgewick 2009, pp. 438.
- ↑ Melczer 2021, pp. 13.
- ↑ Flajolet and Sedgewick 2009, pp. 650 and 717.
- ↑ Melczer 2021, pp. 13-14.
- ↑ Sedgewick 4, pp. 59
- ↑ Flajolet and Sedgewick 2009, pp. 435. Hardy 1949, pp. 166. I use the form in which it is stated by Flajolet and Sedgewick.
- ↑ Pemantle and Wilson 2013, pp. 55-56.
- ↑ Wilf 2006, pp. 194.
- ↑ Flajolet and Sedgewick 2009, pp. 393.
- ↑ Wilf 2006, pp. 196.
- ↑ Flajolet and Sedgewick 2009, pp. 542.
- ↑ See Flajolet and Sedgewick 2009, pp. 565 or Wilf 2006, pp. 199.
- ↑ Flajolet and Sedgewick 2009, pp. 553.
- ↑ Sedgewick 8, pp. 25.
References
- Flajolet, Philippe; Sedgewick, Robert (2009). Analytic Combinatorics. Cambridge University Press. https://ac.cs.princeton.edu/home/AC.pdf.
- Hardy, G.H. (1949). Divergent Series (1st ed.). Oxford University Press.
- Melczer, Stephen (2021). An Invitation to Analytic Combinatorics: From One to Several Variables. Springer Texts & Monographs in Symbolic Computation. https://melczer.ca/files/Melczer-SubmittedManuscript.pdf.
- Pemantle, Robin; Wilson, Mark C. (2013). Analytic Combinatorics in Several Variables. Cambridge University Press. https://acsvproject.com/ACSV121108submitted.pdf.
- Sedgewick, Robert. "4. Complex Analysis, Rational and Meromorphic Asymptotics.". https://ac.cs.princeton.edu/online/slides/AC04-Poles.pdf.
- Sedgewick, Robert. "8. Saddle-Point Asymptotics". https://ac.cs.princeton.edu/online/slides/AC08-Saddle.pdf.
- Szegő, Gabor (1975). Orthogonal Polynomials (4th ed.). American Mathematical Society.
- Wilf, Herbert S. (2006). Generatingfunctionology (3rd ed.). A K Peters, Ltd. https://www2.math.upenn.edu/~wilf/gfology2.pdf.
Further reading
Wikibooks has a book on the topic of: Analytic Combinatorics |
- De Bruijn, N.G. (1981). Asymptotic Methods in Analysis. Dover Publications.
- Flajolet, Philippe; Odlyzko, Andrew (1990). "Singularity analysis of generating functions". SIAM Journal on Discrete Mathematics 1990 (3). http://www.dtc.umn.edu/~odlyzko/doc/arch/singularity.anal.pdf.
- Mishna, Marni (2020). Analytic Combinatorics: A Multidimensional Approach. Taylor & Francis Group, LLC.
- Sedgewick, Robert. "6. Singularity Analysis". https://ac.cs.princeton.edu/online/slides/AC06-SA.pdf.
External links
- Analytic Combinatorics online course
- An Introduction to the Analysis of Algorithms online course
- Analytic Combinatorics in Several Variables projects
- An Invitation to Analytic Combinatorics
See also
- Symbolic method (combinatorics)
- Analytic Combinatorics (book)
Original source: https://en.wikipedia.org/wiki/Analytic combinatorics.
Read more |