Artin–Schreier curve

From HandWiki

In mathematics, an Artin–Schreier curve is a plane curve defined over an algebraically closed field of characteristic [math]\displaystyle{ p }[/math] by an equation

[math]\displaystyle{ y^p - y = f(x) }[/math]

for some rational function [math]\displaystyle{ f }[/math] over that field.

One of the most important examples of such curves is hyperelliptic curves in characteristic 2, whose Jacobian varieties have been suggested for use in cryptography.[1] It is common to write these curves in the form

[math]\displaystyle{ y^2 + h(x) y = f(x) }[/math]

for some polynomials [math]\displaystyle{ f }[/math] and [math]\displaystyle{ h }[/math].

Definition

More generally, an Artin-Schreier curve defined over an algebraically closed field of characteristic [math]\displaystyle{ p }[/math] is a branched covering

[math]\displaystyle{ C \to \mathbb{P}^1 }[/math]

of the projective line of degree [math]\displaystyle{ p }[/math]. Such a cover is necessarily cyclic, that is, the Galois group of the corresponding algebraic function field extension is the cyclic group [math]\displaystyle{ \mathbb{Z}/p\mathbb{Z} }[/math]. In other words, [math]\displaystyle{ k(C)/k(x) }[/math] is an Artin–Schreier extension.

The fundamental theorem of Artin–Schreier theory implies that such a curve defined over a field [math]\displaystyle{ k }[/math] has an affine model

[math]\displaystyle{ y^p - y = f(x), }[/math]

for some rational function [math]\displaystyle{ f \in k(x) }[/math] that is not equal for [math]\displaystyle{ z^p - z }[/math] for any other rational function [math]\displaystyle{ z }[/math]. In other words, if we define polynomial [math]\displaystyle{ g(z) = z^p - z }[/math], then we require that [math]\displaystyle{ f \in k(x) \backslash g(k(x)) }[/math].

Ramification

Let [math]\displaystyle{ C: y^p - y = f(x) }[/math] be an Artin–Schreier curve. Rational function [math]\displaystyle{ f }[/math] over an algebraically closed field [math]\displaystyle{ k }[/math] has partial fraction decomposition

[math]\displaystyle{ f(x) = f_\infty(x) + \sum_{\alpha \in B'} f_\alpha\left(\frac{1}{x-\alpha}\right) }[/math]

for some finite set [math]\displaystyle{ B' }[/math] of elements of [math]\displaystyle{ k }[/math] and corresponding non-constant polynomials [math]\displaystyle{ f_\alpha }[/math] defined over [math]\displaystyle{ k }[/math], and (possibly constant) polynomial [math]\displaystyle{ f_\infty }[/math]. After a change of coordinates, [math]\displaystyle{ f }[/math] can be chosen so that the above polynomials have degrees coprime to [math]\displaystyle{ p }[/math], and the same either holds for [math]\displaystyle{ f_\infty }[/math] or it is zero. If that is the case, we define

[math]\displaystyle{ B = \begin{cases} B' &\text{ if } f_\infty = 0, \\ B'\cup\{\infty\} &\text{ otherwise.}\end{cases} }[/math]

Then the set [math]\displaystyle{ B \subset \mathbb{P}^1(k) }[/math] is precisely the set of branch points of the covering [math]\displaystyle{ C \to \mathbb{P}^1 }[/math].

For example, Artin–Schreier curve [math]\displaystyle{ y^p - y = f(x) }[/math], where [math]\displaystyle{ f }[/math] is a polynomial, is ramified at a single point over the projective line.

Since the degree of the cover is a prime number, over each branching point [math]\displaystyle{ \alpha \in B }[/math] lies a single ramification point [math]\displaystyle{ P_\alpha }[/math] with corresponding different (not to confused with the ramification index) equal to

[math]\displaystyle{ e(P_\alpha) = (p - 1)\big(\deg(f_\alpha) + 1\big) + 1. }[/math]

Genus

Since [math]\displaystyle{ p }[/math] does not divide [math]\displaystyle{ \deg(f_\alpha) }[/math], ramification indices [math]\displaystyle{ e(P_\alpha) }[/math] are not divisible by [math]\displaystyle{ p }[/math] either. Therefore, the Riemann–Roch theorem may be used to compute that the genus of an Artin–Schreier curve is given by

[math]\displaystyle{ g = \frac{p-1}{2} \left( \sum_{\alpha\in B} \big(\deg(f_\alpha) + 1\big) - 2 \right). }[/math]

For example, for a hyperelliptic curve defined over a field of characteristic [math]\displaystyle{ p = 2 }[/math] by equation [math]\displaystyle{ y^2 - y = f(x) }[/math] with [math]\displaystyle{ f }[/math] decomposed as above,

[math]\displaystyle{ g = \sum_{\alpha\in B} \frac{\deg(f_\alpha) + 1}{2} - 1. }[/math]

Generalizations

Artin–Schreier curves are a particular case of plane curves defined over an algebraically closed field [math]\displaystyle{ k }[/math] of characteristic [math]\displaystyle{ p }[/math] by an equation

[math]\displaystyle{ g(y^p) = f(x) }[/math]

for some separable polynomial [math]\displaystyle{ g \in k[x] }[/math] and rational function [math]\displaystyle{ f \in k(x) \backslash g(k(x)) }[/math]. Mapping [math]\displaystyle{ (x, y) \mapsto x }[/math] yields a covering map from the curve [math]\displaystyle{ C }[/math] to the projective line [math]\displaystyle{ \mathbb{P}^1 }[/math]. Separability of defining polynomial [math]\displaystyle{ g }[/math] ensures separability of the corresponding function field extension [math]\displaystyle{ k(C)/k(x) }[/math]. If [math]\displaystyle{ g(y^p) = a_{m} y^{p^m} + a_{m - 1} y^{p^{m-1}} + \cdots + a_{1} y^p + a_0 }[/math], a change of variables can be found so that [math]\displaystyle{ a_m = a_1 = 1 }[/math] and [math]\displaystyle{ a_0 = 0 }[/math]. It has been shown [2] that such curves can be built via a sequence of Artin-Schreier extension, that is, there exists a sequence of cyclic coverings of curves

[math]\displaystyle{ C \to C_{m-1} \to \cdots \to C_0 = \mathbb{P}^1, }[/math]

each of degree [math]\displaystyle{ p }[/math], starting with the projective line.

See also

References

  1. Koblitz, Neal (1989). "Hyperelliptic cryptosystems". Journal of Cryptology 1 (3): 139–150. doi:10.1007/BF02252872. 
  2. Sullivan, Francis J. (1975). "p-Torsion in the class group of curves with too many automorphisms". Archiv der Mathematik 26 (1): 253–261. doi:10.1007/BF01229737. 
  • Farnell, Shawn; Pries, Rachel (2014). "Families of Artin-Schreier curves with Cartier-Manin matrix of constant rank". Linear Algebra and its Applications 439 (7): 2158–2166. doi:10.1016/j.laa.2013.06.012.