Astronomy:Kantowski–Sachs metric
From HandWiki
In general relativity the Kantowski-Sachs metric (named after Ronald Kantowski and Rainer K. Sachs)[1] describes a homogeneous but anisotropic universe whose spatial section has the topology of [math]\displaystyle{ \mathbb{R} \times S^{2} }[/math]. The metric is:
- [math]\displaystyle{ ds^{2} = -dt^{2} + e^{2\sqrt{\Lambda}t} dz^{2} + \frac{1}{\Lambda}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) }[/math]
The isometry group of this spacetime is [math]\displaystyle{ \mathbb{R} \times SO(3) }[/math]. Remarkably, the isometry group does not act simply transitively on spacetime, nor does it possess a subgroup with simple transitive action.
See also
Notes
- ↑ Kantowski, R.; Sachs, R. K. (1966). "Some spatially inhomogeneous dust models". J. Math. Phys. 7 (3): 443. doi:10.1063/1.1704952. Bibcode: 1966JMP.....7..443K.
Original source: https://en.wikipedia.org/wiki/Kantowski–Sachs metric.
Read more |