Astronomy:List of landing ellipses on extraterrestrial bodies

From HandWiki
Comparison of landing ellipses of NASA Mars landers in 1997, 2008, 2012, and 2021, respectively.
Shaded ellipses of Skylab's reentry on 1979-07-11. Included for purposes of comparison.
Deorbit of Mir, 23 March 2001. The debris field (in red) is ±1,500 x ±100 km, smaller than predicted due atmospheric reentry being slightly steeper than anticipated
The 150 x 20 km[1] landing footprint of Opportunity rover on Meridiani Planum, Mars in 2004
Suggested landing ellipses for Luna-25. Primary ellipses are 1, 4, 6 and secondary ellipses are 2, 3, 5, 7, 8, 9, 10, 11 and B1, B2.[2]

This is a list of the projected landing zones on extraterrestrial bodies. The size of the ellipse or oval graphically represents statistical degrees of uncertainty, i.e. the confidence level of the landing point, with the center of the ellipse being calculated as the most likely given the plethora of variables.[3] Their accuracy has improved from the early attempts in the 1960s; active research continues in the 21st century.[4][5][6][7]

Ellipse table

Mission Country/Agency Destination Date of Impact/Landing Axes Notes
Surveyor 1 United States NASA Moon 1966 50 km[8] Landing error ~18.96 km[9]
Surveyor 3 United States NASA Moon 1967 15.1 x 10.6 km[8] Initial landing ellipse was 30 km, was corrected in-flight after midcourse correction.[8] Landing error ~2.76 km[9]
Apollo 11 United States NASA Moon 1969 18.5 x 4.8 km[10][11] First crewed landing. Landing error ~6.6 km[9]
Apollo 12 United States NASA Moon 1969 ~1 km,[12] or 13.3 x 4.8 km[lower-alpha 1][13] Second crewed landing. Landing error ~160 m[9] Landed in ~200 m from Surveyor 3, its target. Landing was very precise and not intended to be closer.[12]
Apollo 14 United States NASA Moon 1971 ~1 km[12]
Apollo 15 United States NASA Moon 1971 ~1 km[12]
Apollo 16 United States NASA Moon 1972 ~1 km[12]
Apollo 17 United States NASA Moon 1972 ~1 km,[12] or 15 x 5 km[14] Last crewed landing. Landing error ~400 m[9]
Viking United States NASA Mars 1976 280 x 100 km[15] Retrorocket
n/a Shoemaker-Levy 9 (comet) Jupiter 1994-07-16 n/a As per IAUC in 1993 May 22; 0.0003 AU (45,000 km) from the center of Jupiter, i.e. within the planet's radius of 0.0005 AU (69,911 km) on 1994 July 25.4. (sic)[16] Actual train of impacts as finally projected occurred beyond Jupiter's limb.[17] Included for purposes of comparison.
Mars Pathfinder United States NASA Mars 1997 200 x 70 km[18] or 200 x 100 km[19][20] Airbags
Mars Polar Lander United States NASA Mars 1999 200 x 20 km[21] Communications failed before landing attempt.
Mars Exploration Rovers United States NASA Mars 2003 150 x 20 km[22] Airbags
Beagle 2 European Union ESA Mars 2003 174 x 106 km[23] Successful landing, communications failure.
Huygens European Union ESA Titan 2005 1200 x 200 km[24][25]
Phoenix United States NASA Mars 2008 100 x 19 km[3] or "70 km long"[26]
Mars Science Laboratory United States NASA Mars 2012 25 x 20 km[18] Sky crane
Chang'e 3 China CNSA Moon 2013 6 x 6 km[9] Landed with a landing error of ~89 m,[9] 2 m targeting precision[12]
Philae European Union ESA 67P/Churyumov–Gerasimenko 2014 0.5 km[27]
Falcon 9 first-stage booster United States SpaceX Earth 2015 ~20 m[28][29] First reusable rocket, and the most precise landing system to date. Included for comparison.
Schiaparelli EDM European Union ESA Mars 2016 100 x 15 km[30][31] Crash landing.
Cassini United States NASA Saturn 2017-09-17 TBD Rotation brought entry area into view.
InSight United States NASA Mars 2018 130 x 27 km[18]
Hayabusa2 Japan JAXA 162173 Ryugu 2018 2 or 3 m[12] Sampling occured in ~1 m from a target.[12]
OSIRIS-REx United States NASA 101955 Bennu 2020 6.5 m[12] Sampling occured in ~1 m from a target.[12]
Mars 2020 United States NASA Mars 2021 7.7 x 6.6 km[32] Sky crane. Landed 1.7 km from center of ellipse.[33]
Tianwen-1 China CNSA Mars 2021 56 x 22 km[12][34]
ExoMars 2020 European UnionRussia ESA/Roscosmos Mars 2023 104 x 19 km[35][36][37] or 120 x 19 km[38] Mission postponed until 2028.
Luna 25 Russia Roscosmos Moon 2023-08-19 30 x 15 km[2][39][40] Mission failed before landing attempt.
Chandrayaan-3 India ISRO Moon 2023-08-23 4.5 x 2.5 km[41] or 4 x 2.4 km[42]
OSIRIS-REx return capsule United States NASA Earth 2023-09-24 30 x 80 km,[43] 14 x 58 km,[44] or 12 x 30 km[45] Sample return from an asteroid. Capsule landed ~ 8 km from the center.[45]
Peregrine Mission One United States Astrobotic, Inc. Moon 2024-01-18 24 x 6 km[42][46] First U.S. lunar lander built since Apollo Program (1972). Aborted to Point Nemo.
SLIM Japan JAXA Moon 2024-01-19 100 m[47][42] Dubbed "Moon Sniper" for its accuracy (despite having landed upside-down).[48]

file:PIA21896-Saturn-Cassini-ImpactSite-20170915.jpg|thumb|center|700px|Cassini retirement, Saturn, 9.4°N 15 W, 15 September 2017, at the southern edge of the North Equatorial Belt (itself approximately 15,000 km wide); the blander Equatorial Zone is immediately below.

See also


Notes

  1. 7.2 nautical miles (13.3 km) x 2.6 nautical miles (4.8 km) per source

References

  1. "Landing Ellipse for the Opportunity Rover Mars mission | Time and Navigation". http://timeandnavigation.si.edu/multimedia-asset/landing-ellipse-for-the-opportunity-rover-mars-mission. 
  2. 2.0 2.1 Krasilnikov, S. S.; Basilevsky, A. T.; Ivanov, M. A.; Krasilnikov, A. S. (1 March 2021). "Geological and Geomorphological Characteristics of High-Priority Landing Sites for the Luna-Glob Mission" (in en). Solar System Research 55 (2): 83–96. doi:10.1134/S0038094621010056. ISSN 1608-3423. https://link.springer.com/article/10.1134/S0038094621010056. Retrieved 24 January 2024. 
  3. 3.0 3.1 "Landing ellipses". https://www.planetary.org/articles/1425. 
  4. Zhang, Yuan-Long; Chen, Ke-Jun; Liu, Lu-Hua; Tang, Guo-Jian; Bao, Wei-Min (August 22, 2017). "Rapid generation of landing footprint based on geometry-predicted trajectory". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231 (10): 1851–1861. doi:10.1177/0954410016662066. http://journals.sagepub.com/doi/10.1177/0954410016662066. 
  5. "Zeroing in on the Target". https://mars.nasa.gov/resources/25490/zeroing-in-on-the-target. 
  6. Saraf, Amitabh; Leavitt, James; Ferch, Mark; Mease, Kenneth (August 16, 2004). "Landing Footprint Computation for Entry Vehicles". AIAA Guidance, Navigation, and Control Conference and Exhibit. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2004-4774. ISBN 978-1-62410-073-4. https://arc.aiaa.org/doi/10.2514/6.2004-4774. 
  7. Zhang, Yuan-long; Xie, Yu; Xu, Xin (February 1, 2023). "Generation of Landing Footprints for Re-entry Vehicles Based on Lateral Profile Priority". International Journal of Aeronautical and Space Sciences 24 (1): 261–273. doi:10.1007/s42405-022-00503-1. Bibcode2023IJASS..24..261Z. https://doi.org/10.1007/s42405-022-00503-1. 
  8. 8.0 8.1 8.2 "Surveyor III Mission Report". https://ntrs.nasa.gov/api/citations/19670028267/downloads/19670028267.pdf. 
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 Li, Shuang; Jiang, Xiuqiang; Tao, Ting (2016). "Guidance Summary and Assessment of the Chang'e-3 Powered Descent and Landing". Journal of Spacecraft and Rockets 53 (2): 258–277. doi:10.2514/1.A33208. Bibcode2016JSpRo..53..258L. https://www.researchgate.net/publication/284345092_Guidance_Summary_and_Assessment_of_the_Chang'e-3_Powered_Descent_and_Landing. 
  10. Eppler, Dean (2019). "Human Lunar Landing Experience On Project Apollo". https://www.nasa.gov/wp-content/uploads/2023/06/eppler-slides-apollo-lunar-landing-experience-report-20070-r4.pdf. 
  11. Chaikin, Andrew (2007). A Man on the Moon: The Triumphant Story Of The Apollo Space Program. New York: Penguin Group. p. 88. ISBN 978-0-14-311235-8. 
  12. 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 12.11 Lorenz, Ralph D. (1 January 2023). "Planetary landings with terrain sensing and hazard avoidance: A review". Advances in Space Research 71 (1): 1–15. doi:10.1016/j.asr.2022.11.024. ISSN 0273-1177. https://www.sciencedirect.com/science/article/am/pii/S0273117722010468. Retrieved 25 January 2024. 
  13. "Apollo 12 Image Library". https://www.nasa.gov/history/alsj/a12/images12.html. 
  14. "The Mystery of Lunar Water Part 2 Instructor Guide". http://lroc.sese.asu.edu/files/DOCS/LROC_PSR_activity_lunar_water_part_2_instructor.pdf. 
  15. "NASA technology enables precision landing without a pilot". https://phys.org/news/2020-09-nasa-technology-enables-precision.html. 
  16. "IAUC 5800: 1993e". http://www.cbat.eps.harvard.edu/iauc/05800/05800.html#Item1. 
  17. Watanabe, J.; Rogers, J. (July 1, 1994). "Periodic Comet Shoemaker-Levy 9 (1993e)". International Astronomical Union Circular 6025: 1. https://ui.adsabs.harvard.edu/abs/1994IAUC.6025....1W. 
  18. 18.0 18.1 18.2 "Zeroing in on the Target" (in en). https://mars.nasa.gov/resources/25490/zeroing-in-on-the-target/. 
  19. "MPF Landing Footprint Plots". https://mars.nasa.gov/MPF/mpfwwwimages/mpffootp.html. 
  20. "Mars Pathfinder Landing Ellipses". https://www.jpl.nasa.gov/images/pia01123-mars-pathfinder-landing-ellipses. 
  21. "Mars Polar Lander and Deep Space 2 Landing Sites". https://nssdc.gsfc.nasa.gov/planetary/mars/polar_lander/mpl_ds2_landsite.html. 
  22. "Image Gallery: Perseverance Rover - NASA" (in en). https://mars.nasa.gov/mars2020/multimedia/images/index.cfm?imageid=3650. 
  23. Bridges, J. C.; Seabrook, A. M.; Rothery, D. A.; Kim, J. R.; Pillinger, C. T.; Sims, M. R.; Golombek, M. P.; Duxbury, T. et al. (2003). "Selection of the landing site in Isidis Planitia of Mars probe Beagle 2". Journal of Geophysical Research: Planets 108 (E1): 5001. doi:10.1029/2001JE001820. Bibcode2003JGRE..108.5001B. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2001JE001820. 
  24. Lebreton, J. -P.; Matson, D. L. (1997). "1997ESASP1177....5L Page 5". Huygens: Science 1177: 5. Bibcode1997ESASP1177....5L. https://adsabs.harvard.edu/full/1997ESASP1177....5L. 
  25. Lebreton, Jean-Pierre; Witasse, Olivier; Sollazzo, Claudio; Blancquaert, Thierry; Couzin, Patrice; Schipper, Anne-Marie; Jones, Jeremy B.; Matson, Dennis L. et al. (December 23, 2005). "An overview of the descent and landing of the Huygens probe on Titan". Nature 438 (7069): 758–764. doi:10.1038/nature04347. PMID 16319826. Bibcode2005Natur.438..758L. https://www.nature.com/articles/nature04347. 
  26. "Zeroing in on Mars". https://www.jpl.nasa.gov/images/pia10676-zeroing-in-on-mars. 
  27. Agle, D. C.; Laboratory, Jet Propulsion (October 16, 2014). "A Close Up View of the Primary Landing Site on Comet 67P". https://scitechdaily.com/close-view-primary-landing-site-comet-67p/. 
  28. "SpaceX's self-landing rocket is a flying robot that's great at math" (in en). 21 February 2017. https://qz.com/915702/the-spacex-falcon-9-rocket-you-see-landing-on-earth-is-really-a-sophisticated-flying-robot. 
  29. Blackmore, Lars (Winter 2016). "Autonomous Precision Landing of Space Rockets". The Bridge, National Academy of Engineering 46 (4): 15–20. ISSN 0737-6278. http://web.mit.edu/larsb/www/nae_bridge_2016.pdf. Retrieved January 15, 2017. 
  30. Gibney, Elizabeth (October 17, 2016). "Europe and Russia prepare for historic landing on Mars". Nature. doi:10.1038/nature.2016.20812. https://www.nature.com/articles/nature.2016.20812. 
  31. "Spotlight on Schiaparelli’s landing site". https://www.esa.int/About_Us/ESAC/Spotlight_on_Schiaparelli_s_landing_site. 
  32. "Perseverance Rover Landing Ellipse in Jezero Crater" (in en). https://mars.nasa.gov/resources/25491/perseverance-rover-landing-ellipse-in-jezero-crater/. 
  33. Foust, Jeff (February 18, 2021). "Perseverance lands on Mars". https://spacenews.com/perseverance-lands-on-mars/. 
  34. Wu, Bo; Dong, Jie; Wang, Yiran; Rao, Wei; Sun, Zezhou; Li, Zhaojin; Tan, Zhiyun; Chen, Zeyu et al. (2022). "Landing Site Selection and Characterization of Tianwen-1 (Zhurong Rover) on Mars". Journal of Geophysical Research: Planets 127 (4). doi:10.1029/2021je007137. Bibcode2022JGRE..12707137W. http://dx.doi.org/10.1029/2021JE007137. 
  35. "ESA - Robotic Exploration of Mars - Choosing the ExoMars 2020 landing site". https://exploration.esa.int/web/mars/-/53845-landing-site. 
  36. "ExoMars 2020 Landing Map" (in en). https://www.planetary.org/space-images/exomars-2020-landing-map-textured. 
  37. Favaro, E. A.; Balme, M. R.; Davis, J. M.; Grindrod, P. M.; Fawdon, P.; Barrett, A. M.; Lewis, S. R. (April 2021). "The Aeolian Environment of the Landing Site for the ExoMars Rosalind Franklin Rover in Oxia Planum, Mars" (in en). Journal of Geophysical Research: Planets 126 (4). doi:10.1029/2020JE006723. ISSN 2169-9097. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006723. Retrieved 24 January 2024. 
  38. "ExoMars landing site revealed | News" (in en). 22 November 2018. https://le.ac.uk/news/2018/november/19-exomars-update. 
  39. Ivanov, M.A.; Abdrakhimov, A.M.; Basilevsky, A.T.; Demidov, N.E.; Guseva, E.N.; Head, J.W.; Hiesinger, H.; Kohanov, A.A. et al. (November 2018). "Geological characterization of the three high-priority landing sites for the Luna-Glob mission". Planetary and Space Science 162: 190–206. doi:10.1016/j.pss.2017.08.004. 
  40. Ivanov, M.A.; Hiesinger, H.; Abdrakhimov, A.M.; Basilevsky, A.T.; Head, J.W.; Pasckert, J-H.; Bauch, K.; van der Bogert, C.H. et al. (November 2015). "Landing site selection for Luna-Glob mission in crater Boguslawsky". Planetary and Space Science 117: 45–63. doi:10.1016/j.pss.2015.05.007. 
  41. "India's Chandrayaan-3 Will Attempt Soft Lunar Landing | Aviation Week Network". https://aviationweek.com/defense-space/space/indias-chandrayaan-3-will-attempt-soft-lunar-landing. 
  42. 42.0 42.1 42.2 "小型月着陸実証機「SLIM」月着陸へ向けた今後の予定". JAXA. https://www.jaxa.jp/projects/files/youtube/ml_slim_lev1_lev2/jaxa_doc01_20231205.pdf#page=5. 
  43. "OSIRIS-REx Mission Profile – OSIRIS-REx | Spaceflight101". https://spaceflight101.com/osiris-rex/osiris-rex-mission-profile/. 
  44. Warren, Haygen (24 September 2023). "Historic OSIRIS-REx asteroid samples successfully return to Earth". https://www.nasaspaceflight.com/2023/09/osirisrex-landing/. 
  45. 45.0 45.1 Foust, Jeff (24 September 2023). "OSIRIS-REx sample capsule lands in Utah". https://spacenews.com/osiris-rex-sample-capsule-lands-in-utah/. 
  46. Wattles, Jackie (January 19, 2024). "Astrobotic’s Peregrine lunar lander burns up over Pacific Ocean". https://www.cnn.com/2024/01/18/world/peregrine-lunar-lander-astrobotic-nasa-scn/index.html. 
  47. "SLIMの月面ピンポイント着陸技術". https://www.isas.jaxa.jp/feature/forefront/220928.html. 
  48. https://www.pressreader.com/usa/asbury-park-press/20240126/281784223967609