Astronomy:STEVE
STEVE (Strong Thermal Emission Velocity Enhancement) is an atmospheric optical phenomenon that appears as a purple and green light ribbon in the sky, named in late 2016 by aurora watchers from Alberta, Canada. According to analysis of satellite data from the European Space Agency's Swarm mission, the phenomenon is caused by a 25 km (16 mi) wide ribbon of hot plasma at an altitude of 450 km (280 mi), with a temperature of 3,000 °C (3,270 K; 5,430 °F) and flowing at a speed of 6 km/s (3.7 mi/s) (compared to 10 m/s (33 ft/s) outside the ribbon). The phenomenon is not rare, but had not been investigated and described scientifically prior to that time.[1][2][3]
Discovery and naming
The STEVE phenomenon has been observed by auroral photographers for decades.[3] Some evidence suggests that STEVE observations may have been recorded as early as 1705.[4] Notations resembling the phenomenon exist in some observations from 1911 to the 1950s by Carl Størmer.[5][6]
The first accurate determination of the nature of the phenomenon was not made, however, until after members of a Facebook group, Alberta Aurora Chasers, named it, attributed it to a proton aurora, and began calling it a "proton arc".[7] When physics professor Eric Donovan from the University of Calgary saw their photographs and suspected that their determination was incorrect because proton auroras are not visible,[8] he correlated the time and location of the phenomenon with Swarm satellite data and one of the Alberta Aurora Chaser photographers, Song Despins. She provided GPS coordinates from Vimy, Alberta, that helped Donovan link the data to identify the phenomenon.[1]
One of the aurora watchers, photographer Chris Ratzlaff,[9][10] suggested using the name "Steve" for the phenomenon, deriving from a situation occurring in Over the Hedge, an animated comedy movie from 2006. The characters in the movie give the name to a hedge that appears overnight, in order to make it seem more benign.[11] Reports of the heretofore undescribed and unusual "aurora" went viral as an example of citizen science on Aurorasaurus.[12][13]
During the fall meeting of the American Geophysical Union in December 2016, Robert Lysak suggested using a backronym of "Steve" for the phenomenon that would stand for a "Strong Thermal Emission Velocity Enhancement".[14] That acronym, "STEVE", has been adopted by the team at NASA Goddard Space Flight Center that is studying the phenomenon.[15]
Photograph of the phenomenon | |
Gallery |
Occurrence and cause
Location and timing
STEVE phenomena may be spotted further from the poles than the aurora,[16] and as of March 2018, have been observed in the United Kingdom, Canada, Alaska, northern U.S. states, Australia, and New Zealand.[17] The phenomenon appears as a very narrow arc extending for hundreds or thousands of kilometers, aligned east–west. It generally lasts for twenty minutes to an hour. As of March 2018, STEVE phenomena have only been spotted in the presence of an aurora. None were observed from October 2016 to February 2017, or from October 2017 to February 2018, leading NASA to believe that STEVE phenomena may only appear during certain seasons.[18]
Research into cause
A study published in March 2018 by Elizabeth A. MacDonald and co-authors in the peer-reviewed journal, Science Advances, suggested that the STEVE phenomenon accompanies a subauroral ion drift (SAID),[19] a fast-moving stream of extremely hot particles. STEVE marks the first observed visual effect accompanying a SAID.[18]
In August 2018, researchers determined that the skyglow of the phenomenon was not associated with particle precipitation (electrons or ions) and, as a result, could be generated in the ionosphere.[20]
One proposed mechanism for the glow is that excited nitrogen breaks apart and interacts with oxygen to form glowing nitric oxide.[21]
Association with picket-fence aurora
Often, although not always, a STEVE phenomenon is observed above a green, "picket-fence" aurora according to a study published in Geophysical Research Letters.[22][23] Although the picket-fence aurora is created through precipitation of electrons, they appear outside the auroral oval and so their formation is different from traditional aurora.[24] The study also showed these phenomena appear in both hemispheres simultaneously. Sightings of picket-fence aurora have been made without observations of STEVE.[25]
The green emissions in the picket fence aurora seem to be related to eddies in the supersonic flow of charged particles, similar to the eddies seen in a river that move more slowly than the water around them. Hence, the green bars in the picket fence are moving more slowly than the structures in the purple emissions and some scientists have speculated they could be caused by turbulence in the charged particles from space.[26]
Research
2017
- "How I met Steve" - Eric Donovan's presentation to the 2017 ESA Earth Explorer Missions Science Meeting, March 20, 2017 (1:08:30 - 1:26:00) [27]
- "On the location of Steve, the mysterious subauroral feature" [28]
2018
- "New Science in Plain Sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere" [19]
- "On the Origin of STEVE: Particle Precipitation or Ionospheric Skyglow?" [29]
- "Historical observations of STEVE" [30]
- "What else can citizen science and 'amateur' observations reveal about STEVE?" [31]
- "From the spark to the fire, reflections on five years of public participation in aurora research" [32]
- "On the origin and geomagnetic conditions of STEVE's formation" [33]
- "A Statistical Analysis of STEVE" [34]
2019
- "How Did We Miss This? An Upper Atmospheric Discovery Named STEVE" [35]
- "First Observations From the TREx Spectrograph: The Optical Spectrum of STEVE and the Picket Fence Phenomena" [36]
- "Color Ratios of Subauroral (STEVE) Arcs" [37]
- "A new dataset of STEVE phenomenon related observations spanning multiple solar cycles" [38]
- "Subauroral Green STEVE Arcs: Evidence for Low-Energy Excitation" [39]
- "Magnetospheric Signatures of STEVE: Implications for the Magnetospheric Energy Source and Interhemispheric Conjugacy" [40]
- "High-Latitude Ionospheric Electrodynamics Characterizing Energy and Momentum Deposition during STEVE Events Reported by Citizen Scientists" [41]
- "Steve: The Optical Signature of Intense Subauroral Ion Drifts" [42]
- "Optical Spectra and Emission Altitudes of Double-Layer STEVE: A Case Study" [43]
- "The Vertical Distribution of the Optical Emissions of a Steve and Picket Fence Event" [44]
- "Identifying STEVE's Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground" [45]
- "STEVE and the Picket Fence: Evidence of Feedback-Unstable Magnetosphere-Ionosphere Interaction" [46]
- "Possible Evidence of STEVE in Dynamics Explorer-2 Data" [47]
2020
- "Early Ground-Based Work by Auroral Pioneer Carl Størmer on the High-Altitude Detached Subauroral Arcs Now Known as “STEVE”" [48]
- "Early Evidence of Isolated Auroral Structures in the 100 km Height Regime Observed at Subauroral Latitudes by the Aurora Pioneer Carl Størmer" [49]
- "Early Ground-Based Work by Auroral Pioneer Carl Størmer on the High-Altitude Detached Subauroral Arcs Now Known as “STEVE”" [50]
- "Magnetospheric Conditions for STEVE and SAID: Particle Injection, Substorm Surge, and Field-Aligned Currents" [51]
- "Neutral Wind Dynamics Preceding the STEVE Occurrence and Their Possible Preconditioning Role in STEVE Formation" [52]
- "A Mechanism for the STEVE Continuum Emission" [53]
- "High-latitude Ionospheric Electrodynamics during STEVE Events" [54]
- "Dynamics of Auroral Precipitation Boundaries Associated With STEVE and SAID" [55]
- "The Apparent Motion of STEVE and the Picket Fence Phenomena" [56]
- "Characteristics of fragmented aurora-like emissions (FAEs) observed on Svalbard" [57]
- "Fragmented Aurora-like Emissions (FAEs) as a new type of aurora-like phenomenon" [58]
2021
- "Multi-Wavelength Imaging Observations of STEVE at Athabasca, Canada" [59]
- "Registration of synchronous geomagnetic pulsations and proton aurora during the substorm on March 1, 2017" [60]
- "First Simultaneous Observation of STEVE and SAR Arc Combining Data From Citizen Scientists, 630.0 nm All-Sky Images, and Satellites" [61]
- "Proton Aurora and Optical Emissions in the Subauroral Region" [62]
- "Robust techniques to improve high quality triangulations of contemporaneous citizen science observations of STEVE" [63]
- "Comparison of the SAR arc, STEVE and Picket fence dynamics registered at the Maimaga subauroral station on March 1, 2017" [64]
- "Improved Analysis of STEVE Photographs" [65]
2022
- "Rainbow of the Night: First Direct Observation of a SAR arc evolving into STEVE" [66]
- "Auroral structures: Revealing the importance of meso-scale M-I coupling" [67]
2023
- "It's Not Easy Being Green: Kinetic Modeling of the Emission Spectrum Observed in STEVE's Picket Fence" [68]
- "Unsolved problems in Strong Thermal Emission Velocity Enhancement (STEVE) and the picket fence" [69]
See also
References
- ↑ 1.0 1.1 McRae, Mike (24 April 2017). "Introducing Steve - a Newly Discovered Astronomical Phenomenon". ScienceAlert. https://www.sciencealert.com/introducing-steve-a-newly-discovered-light-in-the-sky.
- ↑ "When Swarm Met Steve". ESA. 21 April 2017. http://www.esa.int/Our_Activities/Observing_the_Earth/Swarm/When_Swarm_met_Steve.
- ↑ 3.0 3.1 American Geophysical Union (20 August 2018). "New kind of aurora is not an aurora at all". Physorg.com. https://phys.org/news/2018-08-kind-aurora.html.
- ↑ Finnegan, James; Asher, David; Nezic, Rok; Byrne, Conor; Bailey, Mark (23 July 2018). "Historical observations of STEVE" (in en). The Observatory 138: 227–245. Bibcode: 2018Obs...138..227B.
- ↑ "Early Ground-Based Work by Auroral Pioneer Carl Størmer on the High-Altitude Detached Subauroral Arcs Now Known as "STEVE"". Space Weather 18 (3). 12 February 2020. doi:10.1029/2019SW002384. Bibcode: 2020SpWea..1802384H.
- ↑ "When Størmer Met STEVE". 3 March 2020. http://blog.aurorasaurus.org/?p=891.
- ↑ "Meet Steve" (in en-GB). http://www.esa.int/spaceinimages/Images/2017/04/Meet_Steve.
- ↑ "Aurora photographers find new night sky lights and call them Steve" (in en-GB). BBC News. 23 April 2017. https://www.bbc.com/news/world-us-canada-39686055.
- ↑ ""I propose we call it Steve until then" - Alberta Aurora Chasers". February 10, 2016. https://www.facebook.com/groups/AlbertaAuroraChasers/permalink/1262564057093610/.
- ↑ "Amateur Sky-Watchers Discover Celestial Phenomenon, Name It 'Steve'". 24 April 2017. http://collegecandy.com/2017/04/27/steve-aurora-alberta-chasers-celestial-photos-full-story/.
- ↑ "New atmospheric phenomenon named STEVE discovered by aurora watchers". ABC News. 24 April 2017. http://www.abc.net.au/news/2017-04-24/new-light-phenomenon-called-steve-by-aurora-watchers/8466234.
- ↑ Rozell, Ned (2015-04-02). "Citizen science meets the aurora". http://www.gi.alaska.edu/Alaska-Science-Forum/citizen-science-meets-aurora.
- ↑ "7 Things to Know About "STEVE"". 2017-03-14. http://blog.aurorasaurus.org/?p=449.
- ↑ Moravec, Jeff. "Meet Steve, a sky phenomenon coming into its own". MediaCompany. http://www.startribune.com/meet-steve-a-sky-phenomenon-coming-into-its-own/469002563/.
- ↑ "Meet 'Steve,' a Totally New Kind of Aurora". 2018-03-14. https://news.nationalgeographic.com/2018/03/steve-auroras-identified-plasma/.
- ↑ Saner, Emine (2018-03-19). "'Steve': the mystery purple aurora that rivals the northern lights" (in en). https://www.theguardian.com/science/shortcuts/2018/mar/19/steve-mystery-purple-aura-rivals-northern-lights-alberta-canada-nasa.
- ↑ Skywatching, Samantha Mathewson 2018-03-15T22:47:11Z (15 March 2018). "Help NASA Study 'Steve,' a Newfound Aurora Type" (in en). https://www.space.com/39995-nasa-wants-your-help-photographing-steve.html.
- ↑ 18.0 18.1 Garner, Rob (2018-03-14). "NASA Needs Your Help to Find Steve and Here's How" (in en). NASA. https://www.nasa.gov/feature/goddard/2018/nasa-needs-your-help-to-find-steve-and-heres-how.
- ↑ 19.0 19.1 MacDonald, Elizabeth A.; Donovan, Eric; Nishimura, Yukitoshi; Case, Nathan A.; Gillies, D. Megan; Gallardo-Lacourt, Bea; Archer, William E.; Spanswick, Emma L. et al. (2018-03-01). "New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere" (in en). Science Advances 4 (3): eaaq0030. doi:10.1126/sciadv.aaq0030. ISSN 2375-2548. PMID 29546244. Bibcode: 2018SciA....4...30M.
- ↑ Gallardo-Lacourt, B.; Liang, J.; Nishimura, Y.; Donovan, E. (20 August 2018). "On the Origin of STEVE: Particle Precipitation or Ionospheric Skyglow?". Geophysical Research Letters 45 (16): 7968. doi:10.1029/2018GL078509. Bibcode: 2018GeoRL..45.7968G.
- ↑ Kasha Patel (April 1, 2023). "How to find STEVE, the purple streak that looks like an aurora but isn't". https://www.washingtonpost.com/climate-environment/2023/04/01/steve-aurora-northern-lights-space-find/.
- ↑ Andrews, Robin George (3 May 2019). "Steve the odd 'aurora' revealed to be two sky shows in one". https://www.nationalgeographic.com/science/2019/05/odd-aurora-named-steve-revealed-to-be-two-different-sky-shows-in-one/.
- ↑ Nishimura, Y.; Gallardo‐Lacourt, B.; Zou, Y.; Mishin, E.; Knudsen, D.J.; Donovan, E.F.; Angelopoulos, V.; Raybell, R. (16 April 2019). "Magnetospheric signatures of STEVE: Implication for the magnetospheric energy source and inter‐hemispheric conjugacy". Geophysical Research Letters 46 (11): 5637–5644. doi:10.1029/2019GL082460. Bibcode: 2019GeoRL..46.5637N.
- ↑ Lipuma, Lauren. "Scientists discover what powers celestial phenomenon STEVE". American Geophysical Union. https://news.agu.org/press-release/scientists-discover-what-powers-celestial-phenomenon-steve/.
- ↑ Dunlevie, James (2018-11-06). "Aurora Australis with bonus 'picket fence' wows southern lights chasers in Tasmania". Australian Broadcasting Corporation. https://www.abc.net.au/news/2018-11-06/aurora-australis-southern-lights-dazzle-tasmania/10468644.
- ↑ "Aurora-chasing citizen scientists help discover a new feature of STEVE" (in en). https://phys.org/news/2020-11-aurora-chasing-citizen-scientists-feature-steve.html.
- ↑ "How I met Steve". 20 March 2017. https://livestream.com/esa/earthexplorer2017.
- ↑ Gallardo-Lacourt, B.; Nishimura, Y.; Donovan, E.; Gillies, D.M.; Spanswick, E.; Archer, W.E.; MacDonald, E.; Knudsen, D.J. (December 2017). "On the location of Steve, the mysterious subauroral feature" (in en). AGU Fall Meeting Abstracts 2017. Bibcode: 2017AGUFMSA51B2387G.
- ↑ Gallardo-Lacourt, B.; Liang, J.; Nishimura, Y.; Donovan, E. (February 20, 2018). "On the Origin of STEVE: Particle Precipitation or Ionospheric Skyglow?" (in en). Geophysical Research Letters 45 (16): 7968–7973. doi:10.1029/2018GL078509. Bibcode: 2018GeoRL..45.7968G.
- ↑ Bailey, M.; Byrne, C.; Nezic, R.; Asher, D.; Finnegan, J. (July 23, 2018). "Historical observations of STEVE" (in en). The Observatory 138: 227–245. Bibcode: 2018Obs...138..227B.
- ↑ MacDonald, E.; Conde, J.M.; Kosar, B.; Lynch, K.A.; Semeter, J.L.; Zeller, N. (December 1, 2018). "What else can citizen science and 'amateur' observations reveal about STEVE?" (in en). American Geophysical Union, Fall Meeting 2018 2018. Bibcode: 2018AGUFMSM43A..09M. https://ui.adsabs.harvard.edu/abs/2018AGUFMSM43A..09M/abstract.
- ↑ MacDonald, E.; Ratzlaff, C. (December 1, 2018). "From the spark to the fire, reflections on five years of public participation in aurora research" (in en). American Geophysical Union, Fall Meeting 2018 2018. Bibcode: 2018AGUFM.U51A..04M. https://ui.adsabs.harvard.edu/abs/2018AGUFM.U51A..04M/abstract.
- ↑ Gallardo-Lacourt, B.; Liang, J.; Nishimura, Y.; Donovan, E.; Gillies, D.M.; Perry, G.W.; Archer, W.E.; Nava, O. et al. (December 1, 2018). "On the origin and geomagnetic conditions of STEVE's formation" (in en). American Geophysical Union, Fall Meeting 2018 2018. Bibcode: 2018AGUFMSM51E2787G. https://ui.adsabs.harvard.edu/abs/2018AGUFMSM51E2787G/abstract.
- ↑ Gallardo-Lacourt, B.; Nishimura, e.; Donovan, E.; Gillies, D.M.; Perry, G.W.; Archer, W.E.; Nava, O.; Spanswick, E.L. (November 8, 2018). "A Statistical Analysis of STEVE" (in en). Journal of Geophysical Research: Space Physics 123 (11): 9893–9905. doi:10.1029/2018JA025368. Bibcode: 2018JGRA..123.9893G. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025368.
- ↑ Gallardo-Lacourt, B.; Perry, G. W.; Archer, W. E.; Donovan, E. (March 2019). "How Did We Miss This? An Upper Atmospheric Discovery Named STEVE" (in en). Eos Science News by AGU. https://eos.org/features/how-did-we-miss-this-an-upper-atmospheric-discovery-named-steve.
- ↑ Gillies, D.M.; Donovan, E.; Hampton, D.; Liang, J.; Connors, M.; Nishimura, Y.; Gallardo-Lacourt, B.; Spanswick, E.L. (July 3, 2019). "First Observations From the TREx Spectrograph: The Optical Spectrum of STEVE and the Picket Fence Phenomena" (in en). Geophysical Research Letters 46 (13): 7207–7213. doi:10.1029/2019GL083272. Bibcode: 2019GeoRL..46.7207G. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL083272.
- ↑ Mende, S.B.; Turner, C. (June 24, 2019). "Color Ratios of Subauroral (STEVE) Arcs" (in en). Journal of Geophysical Research: Space Physics 124 (7): 5945–5955. doi:10.1029/2019JA026851. Bibcode: 2019JGRA..124.5945M. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JA026851.
- ↑ MacDonald, E.; Hunnekuhl, M. (December 2019). "A new dataset of STEVE phenomenon related observations spanning multiple solar cycles" (in en). American Geophysical Union, Fall Meeting 2019 2019. Bibcode: 2019AGUFMSM11C3299M.
- ↑ Mende, S.B.; Harding, B.J.; Turner, C. (December 18, 2019). "Subauroral Green STEVE Arcs: Evidence for Low-Energy Excitation" (in en). Geophysical Research Letters 46 (24): 14256–14262. doi:10.1029/2019GL086145. Bibcode: 2019GeoRL..4614256M. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL086145.
- ↑ Nishimura, Y.; Gallardo-Lacourt, B.; Zou, Y.; Mishin, E.; Knudsen, D.J.; Donovan, E.; Angelopoulos, V.; Raybell, R. (April 16, 2019). "Magnetospheric Signatures of STEVE: Implications for the Magnetospheric Energy Source and Interhemispheric Conjugacy" (in en). Geophysical Research Letters 46 (11): 5637–5644. doi:10.1029/2019GL082460. Bibcode: 2019GeoRL..46.5637N. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082460.
- ↑ Svaldi, V.C.; Matsuo, T.; Kilcommons, L.M.; MacDonald, E.; Gallardo-Lacourt, B. (December 1, 2019). "High-Latitude Ionospheric Electrodynamics Characterizing Energy and Momentum Deposition during STEVE Events Reported by Citizen Scientists" (in en). American Geophysical Union, Fall Meeting 2019 2019. Bibcode: 2019AGUFMSM11B3283S. https://ui.adsabs.harvard.edu/abs/2019AGUFMSM11B3283S/abstract.
- ↑ Archer, W.E.; Gallardo-Lacourt, B.; Perry, G.W.; St.-Maurice, J.P.; Buchert, S.C.; Donovan, E. (June 4, 2019). "Steve: The Optical Signature of Intense Subauroral Ion Drifts" (in en). Geophysical Research Letters 46 (12): 6279–6286. doi:10.1029/2019GL082687. Bibcode: 2019GeoRL..46.6279A.
- ↑ Liang, J.; Donovan, E.; Connors, M.; Gillies, D.; St-Maurice, J.P.; Jackel, B.; Gallardo-Lacourt, B.; Spanswick, E. et al. (December 3, 2019). "Optical Spectra and Emission Altitudes of Double-Layer STEVE: A Case Study" (in en). Geophysical Research Letters 46 (23): 13630–13639. doi:10.1029/2019GL085639. Bibcode: 2019GeoRL..4613630L. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL085639.
- ↑ Archer, W.E.; St.-Maurice, J.P.; Gallardo-Lacourt, B.; Perry, G.W.; Cully, C.M.; Donovan, E.; Gillies, G.M.; Downie, R. et al. (September 3, 2019). "The Vertical Distribution of the Optical Emissions of a Steve and Picket Fence Event" (in en). Geophysical Research Letters 46 (19): 10719–10725. doi:10.1029/2019GL084473. Bibcode: 2019GeoRL..4610719A.
- ↑ Chu, X.; Malaspina, D.; Gallardo-Lacourt, B.; Liang, J.; Andersson, L.; Ma, Q.; Artemyev, A.; Liu, J. et al. (November 11, 2019). "Identifying STEVE's Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground" (in en). Geophysical Research Letters 46 (22): 12665–12674. doi:10.1029/2019GL082789. Bibcode: 2019GeoRL..4612665C.
- ↑ Mishin, E.; Streltsov, A. (December 10, 2019). "STEVE and the Picket Fence: Evidence of Feedback-Unstable Magnetosphere-Ionosphere Interaction" (in en). EPJ Web of Conferences 46 (24): 14247–14255. doi:10.1029/2019GL085446. Bibcode: 2019GeoRL..4614247M. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL085446?fbclid=IwAR2qG8LhYn4HnQG35oyDulOXRKS3bd1yqdhySUa4bkwwjeP7iT49p8XOUoM.
- ↑ Erlandson, R.E. (December 1, 2019). "Possible Evidence of STEVE in Dynamics Explorer-2 Data" (in en). American Geophysical Union, Fall Meeting 2019 2019. Bibcode: 2019AGUFMSM22A..01E. https://ui.adsabs.harvard.edu/abs/2019AGUFMSM22A..01E/abstract.
- ↑ Hunnekulh, M.; MacDonald, E. (February 12, 2020). "Early Ground-Based Work by Auroral Pioneer Carl Størmer on the High-Altitude Detached Subauroral Arcs Now Known as "STEVE"" (in en). Space Weather 18 (3). doi:10.1029/2019SW002384. Bibcode: 2020SpWea..1802384H.
- ↑ Hunnekuhl, M.; MacDonald, E. (December 1, 2020). "Early Evidence of Isolated Auroral Structures in the 100 km Height Regime Observed at Subauroral Latitudes by the Aurora Pioneer Carl Størmer" (in en). American Geophysical Union, Fall Meeting 2020 2020. Bibcode: 2020AGUFMSM044..07H. https://ui.adsabs.harvard.edu/abs/2020AGUFMSM044..07H/abstract.
- ↑ Hunnekuhl, M.; MacDonald, E. (February 12, 2020). "Early Ground-Based Work by Auroral Pioneer Carl Størmer on the High-Altitude Detached Subauroral Arcs Now Known as "STEVE"" (in en). Space Weather 18 (3). doi:10.1029/2019SW002384. Bibcode: 2020SpWea..1802384H.
- ↑ Nishimura, Y.; Yang, J.; Weygand, M.; Wang, W.; Kosar, B.; Donovan, E.; Angelopoulos, V.; Paxton, L.J. et al. (July 13, 2020). "Magnetospheric Conditions for STEVE and SAID: Particle Injection, Substorm Surge, and Field-Aligned Currents" (in en). Journal of Geophysical Research: Space Physics 125 (8). doi:10.1029/2020JA027782. Bibcode: 2020JGRA..12527782N. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JA027782?fbclid=IwAR2RxCxsrfTCZDS882flmPH4DfaCLO1pX4n0-Iukv7mpnq24_rHQKm-i-bM.
- ↑ Liang, J.; Zou, Y.; Nishimura, Y.; Donovan, E. (2021). "Neutral Wind Dynamics Preceding the STEVE Occurrence and Their Possible Preconditioning Role in STEVE Formation" (in en). Journal of Geophysical Research: Space Physics 126 (3). doi:10.1029/2020JA028505. Bibcode: 2021JGRA..12628505L. https://www.researchgate.net/publication/349292932.
- ↑ Harding, B.J.; Mende, S.B.; Triplett, C.; Wu, Y-J.J. (March 18, 2020). "A Mechanism for the STEVE Continuum Emission" (in en). Geophysical Research Letters 47 (7). doi:10.1029/2020GL087102. Bibcode: 2020GeoRL..4787102H. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020GL087102?fbclid=IwAR2F-l65xuUZkEJX4E4rUvQLbpGHCqSSoMVUnuXmbeydjasgLFA0QxwYfmY.
- ↑ Svaldi, V.C.; Matsuo, T.; Kilcommons, L.M.; Gallardo-Lacourt, B.; McDonald, E. (December 1, 2020). "High-latitude Ionospheric Electrodynamics during STEVE Events" (in en). American Geophysical Union, Fall Meeting 2020 2020. Bibcode: 2020AGUFMSA0210010S. https://ui.adsabs.harvard.edu/abs/2020AGUFMSA0210010S/abstract.
- ↑ Nishimura, Y.; Donovan, E.; Angelopoulos, V.; Nishitani, N. (June 18, 2020). "Dynamics of Auroral Precipitation Boundaries Associated With STEVE and SAID" (in en). Journal of Geophysical Research: Space Physics 125 (8). doi:10.1029/2020JA028067. Bibcode: 2020JGRA..12528067N. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JA028067?fbclid=IwAR12CsaVM7ks5rfAvAJeMRZH_gjwBANYCBPAZQmxaaZXtV1r_ShuVzmT67o.
- ↑ Gillies, D.M.; Liang, J.; Donovan, E.; Spanswick, E. (October 16, 2020). "The Apparent Motion of STEVE and the Picket Fence Phenomena" (in en). Geophysical Research Letters 47 (20). doi:10.1029/2020GL088980. Bibcode: 2020GeoRL..4788980G. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088980?fbclid=IwAR0PLBq0f-YSWbiqG4TF07fmUmEX1BDeYxCNOAaSvZXnGWRe9crrbKoelE4.
- ↑ Dreyer, J.; Partamies, N.; Whiter, D.; Ellingsen, P.G.; Baddeley, L.; Buchert, S.C. (2021). "Characteristics of fragmented aurora-like emissions (FAEs) observed on Svalbard" (in en). Annales Geophysicae 39 (2): 277–288. doi:10.5194/angeo-39-277-2021. Bibcode: 2021AnGeo..39..277D. https://angeo.copernicus.org/articles/39/277/2021/?fbclid=IwAR1rx41kCenRJk_4bfk0MkuYt1oVmlmQ5pgkd0QVfL1DFf44n1KYVupa1FE.
- ↑ Dreyer, J.; Partamies, N.; Whiter, D.; Ellingsen, P.G.; Baddeley, L.; Buchert, S.C. (June 30, 2020). "Fragmented Aurora-like Emissions (FAEs) as a new type of aurora-like phenomenon" (in en). Annales Geophysicae. https://angeo.copernicus.org/preprints/angeo-2020-45/angeo-2020-45.pdf. Retrieved 27 May 2022.
- ↑ Yadav, S.; Shiokawa, K.; Otsuka, Y.; Connors, M.; St Maurice, J.-P. (February 2, 2021). "Multi-Wavelength Imaging Observations of STEVE at Athabasca, Canada" (in en). Journal of Geophysical Research: Space Physics 126 (2). doi:10.1029/2020JA028622. Bibcode: 2021JGRA..126.8622Y. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JA028622.
- ↑ Varlamov, I.; Parnikov, S.; Ievenko, I.; Baishev, D.; Shiokawa, K. (November 8, 2021). "Registration of synchronous geomagnetic pulsations and proton aurora during the substorm on March 1, 2017" (in en). EPJ Web of Conferences 254: 02012. doi:10.1051/epjconf/202125402012. Bibcode: 2021EPJWC.25402012V. https://www.epj-conferences.org/articles/epjconf/abs/2021/08/epjconf_strpep2021_02012/epjconf_strpep2021_02012.html.
- ↑ Martinis, C.; Nishimura, Y.; Wroten, J.; Bhatt, A.; Dyer, A.; Gallardo-Lacourt, B. (April 6, 2021). "First Simultaneous Observation of STEVE and SAR Arc Combining Data From Citizen Scientists, 630.0 nm All-Sky Images, and Satellites" (in en). Geophysical Research Letters 48 (8). doi:10.1029/2020GL092169. Bibcode: 2021GeoRL..4892169M. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL092169?fbclid=IwAR0RggoFdtMJHUiZ8tWlUj4gFqV1UdpdTgnCjE0i-l11_u0fjFcboB0HCEM.
- ↑ Gallardo-Lacourt, B.; Frey, H.U.; Martinis, C. (January 6, 2021). "Proton Aurora and Optical Emissions in the Subauroral Region" (in en). Space Science Reviews 217 (1): 10. doi:10.1007/s11214-020-00776-6. Bibcode: 2021SSRv..217...10G. https://link.springer.com/article/10.1007/s11214-020-00776-6?fbclid=IwAR1mPa4PGmCjJD41aRNiCfraE0F5z3ggCjojS_b8t6lAaDlJsPxB0aPBq2I.
- ↑ Hunnekuhl, M.; MacDonald, E.; Swanson, B.; Voss, S.; Maynard, T.; Chernenkoff, A.; Stone, J.; Standring, W. et al. (December 30, 2022). "Robust techniques to improve high quality triangulations of contemporaneous citizen science observations of STEVE" (in en). AGU Poster Sessions 2021. Bibcode: 2021AGUFMSA35F1957H. https://osf.io/b5hka/download.
- ↑ Parnikov, S.G.; Ievenko, I.B.; Koltovskoy, I.I. (December 15, 2021). "Comparison of the SAR arc, STEVE and Picket fence dynamics registered at the Maimaga subauroral station on March 1, 2017" (in en). 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics. 11916. pp. 1615–1619. doi:10.1117/12.2603112. ISBN 9781510646971. Bibcode: 2021SPIE11916E..7LP. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11916/119167L/Comparison-of-the-SAR-arc-STEVE-and-Picket-fence-dynamics/10.1117/12.2603112.short?SSO=1&fbclid=IwAR1Mn_duc2xJt0REJXpPalk3QlrwJIjrE-ylmDtPICNbTX0iUFph2wk5lRQ.
- ↑ Bennett, C.L.; Bourassa, N. (March 18, 2021). "Improved Analysis of STEVE Photographs" (in en). Journal of Geophysical Research: Space Physics 126 (4). doi:10.1029/2020JA027843. Bibcode: 2021JGRA..12627843B. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JA027843?fbclid=IwAR08i4gDstvUqApAFSzl9UJ_c1f3FXurhwoSAeWYC7yX37gLm4VGBZGf11I.
- ↑ Martinis, C.; Gallardo-Lacourt, B.; Wroten, J.; Nishimura, Y.; Baumgardner, J.; Knudsen, D.J. (May 2, 2022). "Rainbow of the Night: First Direct Observation of a SAR arc evolving into STEVE" (in en). Geophysical Research Letters 49 (11). doi:10.1029/2022GL098511. Bibcode: 2022GeoRL..4998511M.
- ↑ Lyons, L.R.; Gallardo-Lacourt, B.; Nishimura, Y. (January 1, 2022). "Auroral structures: Revealing the importance of meso-scale M-I coupling" (in en). Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System. pp. 65–101. doi:10.1016/B978-0-12-821366-7.00004-4. ISBN 9780128213667. https://www.sciencedirect.com/science/article/pii/B9780128213667000044?fbclid=IwAR12_e8CYylaeFsRsr0E_izfKmVac1QpujvSvcbflGghfqwh413oUvwg0uE#!.
- ↑ Gasque, L.; Janalizadeh, R.; Harding, B.; Yonker, J.; Gillies, M. (November 3, 2023). "It's Not Easy Being Green: Kinetic Modeling of the Emission Spectrum Observed in STEVE's Picket Fence" (in en). Geophysical Research Letters 50 (21). doi:10.1029/2023GL106073.
- ↑ Nishimura, Y.; Dyer, A.; Kangas, L.; Donovan, E.; Angelopoulos, V. (January 18, 2023). "Unsolved problems in Strong Thermal Emission Velocity Enhancement (STEVE) and the picket fence" (in en). Frontiers in Astronomy and Space Sciences 50 (21). doi:10.3389/fspas.2023.1087974.
External links
- Eric Donovan's presentation at 2017 ESA Earth Explorer Missions Science Meeting (1:08:30 - 1:26:00)
- Alberta Aurora Chasers
- NASA Goddard with Liz MacDonald (14 March 2018). "The Aurora Named Steve". https://www.youtube.com/watch?v=wRHwGD-is9U.
- STEVE over Copper Harbor May 5, 2021
Original source: https://en.wikipedia.org/wiki/STEVE.
Read more |