Asymptotic dimension

From HandWiki

In metric geometry, asymptotic dimension of a metric space is a large-scale analog of Lebesgue covering dimension. The notion of asymptotic dimension was introduced by Mikhail Gromov in his 1993 monograph Asymptotic invariants of infinite groups[1] in the context of geometric group theory, as a quasi-isometry invariant of finitely generated groups. As shown by Guoliang Yu, finitely generated groups of finite homotopy type with finite asymptotic dimension satisfy the Novikov conjecture.[2] Asymptotic dimension has important applications in geometric analysis and index theory.

Formal definition

Let [math]\displaystyle{ X }[/math] be a metric space and [math]\displaystyle{ n\ge 0 }[/math] be an integer. We say that [math]\displaystyle{ \operatorname{asdim}(X)\le n }[/math] if for every [math]\displaystyle{ R\ge 1 }[/math] there exists a uniformly bounded cover [math]\displaystyle{ \mathcal U }[/math] of [math]\displaystyle{ X }[/math] such that every closed [math]\displaystyle{ R }[/math]-ball in [math]\displaystyle{ X }[/math] intersects at most [math]\displaystyle{ n+1 }[/math] subsets from [math]\displaystyle{ \mathcal U }[/math]. Here 'uniformly bounded' means that [math]\displaystyle{ \sup_{U\in \mathcal U} \operatorname{diam}(U) \lt \infty }[/math].

We then define the asymptotic dimension [math]\displaystyle{ \operatorname{asdim}(X) }[/math] as the smallest integer [math]\displaystyle{ n\ge 0 }[/math] such that [math]\displaystyle{ \operatorname{asdim}(X)\le n }[/math], if at least one such [math]\displaystyle{ n }[/math] exists, and define [math]\displaystyle{ \operatorname{asdim}(X):=\infty }[/math] otherwise.

Also, one says that a family [math]\displaystyle{ (X_i)_{i\in I} }[/math] of metric spaces satisfies [math]\displaystyle{ \operatorname{asdim}(X)\le n }[/math] uniformly if for every [math]\displaystyle{ R\ge 1 }[/math] and every [math]\displaystyle{ i\in I }[/math] there exists a cover [math]\displaystyle{ \mathcal U_i }[/math] of [math]\displaystyle{ X_i }[/math] by sets of diameter at most [math]\displaystyle{ D(R)\lt \infty }[/math] (independent of [math]\displaystyle{ i }[/math]) such that every closed [math]\displaystyle{ R }[/math]-ball in [math]\displaystyle{ X_i }[/math] intersects at most [math]\displaystyle{ n+1 }[/math] subsets from [math]\displaystyle{ \mathcal U_i }[/math].

Examples

  • If [math]\displaystyle{ X }[/math] is a metric space of bounded diameter then [math]\displaystyle{ \operatorname{asdim}(X)=0 }[/math].
  • [math]\displaystyle{ \operatorname{asdim}(\mathbb R)=\operatorname{asdim}(\mathbb Z)=1 }[/math].
  • [math]\displaystyle{ \operatorname{asdim}(\mathbb R^n)=n }[/math].
  • [math]\displaystyle{ \operatorname{asdim}(\mathbb H^n)=n }[/math].

Properties

  • If [math]\displaystyle{ Y\subseteq X }[/math] is a subspace of a metric space [math]\displaystyle{ X }[/math], then [math]\displaystyle{ \operatorname{asdim}(Y)\le \operatorname{asdim}(X) }[/math].
  • For any metric spaces [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] one has [math]\displaystyle{ \operatorname{asdim}(X\times Y)\le \operatorname{asdim}(X)+\operatorname{asdim}(Y) }[/math].
  • If [math]\displaystyle{ A,B\subseteq X }[/math] then [math]\displaystyle{ \operatorname{asdim}(A\cup B)\le \max\{\operatorname{asdim}(A), \operatorname{asdim}(B)\} }[/math].
  • If [math]\displaystyle{ f:Y\to X }[/math] is a coarse embedding (e.g. a quasi-isometric embedding), then [math]\displaystyle{ \operatorname{asdim}(Y)\le \operatorname{asdim}(X) }[/math].
  • If [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are coarsely equivalent metric spaces (e.g. quasi-isometric metric spaces), then [math]\displaystyle{ \operatorname{asdim}(X)= \operatorname{asdim}(Y) }[/math].
  • If [math]\displaystyle{ X }[/math] is a real tree then [math]\displaystyle{ \operatorname{asdim}(X)\le 1 }[/math].
  • Let [math]\displaystyle{ f : X\to Y }[/math] be a Lipschitz map from a geodesic metric space [math]\displaystyle{ X }[/math] to a metric space [math]\displaystyle{ Y }[/math] . Suppose that for every [math]\displaystyle{ r \gt 0 }[/math] the set family [math]\displaystyle{ \{f^{-1}(B_r(y))\}_{y\in Y} }[/math] satisfies the inequality [math]\displaystyle{ \operatorname{asdim} \le n }[/math] uniformly. Then [math]\displaystyle{ \operatorname{asdim}(X)\le \operatorname{asdim}(Y) +n. }[/math] See[3]
  • If [math]\displaystyle{ X }[/math] is a metric space with [math]\displaystyle{ \operatorname{asdim}(X)\lt \infty }[/math] then [math]\displaystyle{ X }[/math] admits a coarse (uniform) embedding into a Hilbert space.[4]
  • If [math]\displaystyle{ X }[/math] is a metric space of bounded geometry with [math]\displaystyle{ \operatorname{asdim}(X)\le n }[/math] then [math]\displaystyle{ X }[/math] admits a coarse embedding into a product of [math]\displaystyle{ n+1 }[/math] locally finite simplicial trees.[5]

Asymptotic dimension in geometric group theory

Asymptotic dimension achieved particular prominence in geometric group theory after a 1998 paper of Guoliang Yu[2] , which proved that if [math]\displaystyle{ G }[/math] is a finitely generated group of finite homotopy type (that is with a classifying space of the homotopy type of a finite CW-complex) such that [math]\displaystyle{ \operatorname{asdim}(G)\lt \infty }[/math], then [math]\displaystyle{ G }[/math] satisfies the Novikov conjecture. As was subsequently shown,[6] finitely generated groups with finite asymptotic dimension are topologically amenable, i.e. satisfy Guoliang Yu's Property A introduced in[7] and equivalent to the exactness of the reduced C*-algebra of the group.

  • If [math]\displaystyle{ G }[/math] is a word-hyperbolic group then [math]\displaystyle{ \operatorname{asdim}(G)\lt \infty }[/math].[8]
  • If [math]\displaystyle{ G }[/math] is relatively hyperbolic with respect to subgroups [math]\displaystyle{ H_1,\dots, H_k }[/math] each of which has finite asymptotic dimension then [math]\displaystyle{ \operatorname{asdim}(G)\lt \infty }[/math].[9]
  • [math]\displaystyle{ \operatorname{asdim}(\mathbb Z^n)=n }[/math].
  • If [math]\displaystyle{ H\le G }[/math], where [math]\displaystyle{ H,G }[/math] are finitely generated, then [math]\displaystyle{ \operatorname{asdim}(H)\le \operatorname{asdim}(G) }[/math].
  • For Thompson's group F we have [math]\displaystyle{ asdim(F)=\infty }[/math] since [math]\displaystyle{ F }[/math] contains subgroups isomorphic to [math]\displaystyle{ \mathbb Z^n }[/math] for arbitrarily large [math]\displaystyle{ n }[/math].
  • If [math]\displaystyle{ G }[/math] is the fundamental group of a finite graph of groups [math]\displaystyle{ \mathbb A }[/math] with underlying graph [math]\displaystyle{ A }[/math] and finitely generated vertex groups, then[10]

[math]\displaystyle{ \operatorname{asdim}(G)\le 1+ \max_{v\in VY} \operatorname{asdim} (A_v). }[/math]

  • Mapping class groups of orientable finite type surfaces have finite asymptotic dimension.[11]
  • Let [math]\displaystyle{ G }[/math] be a connected Lie group and let [math]\displaystyle{ \Gamma\le G }[/math] be a finitely generated discrete subgroup. Then [math]\displaystyle{ asdim(\Gamma)\lt \infty }[/math].[12]
  • It is not known if [math]\displaystyle{ Out(F n) }[/math] has finite asymptotic dimension for [math]\displaystyle{ n\gt 2 }[/math].[13]

References

  1. Gromov, Mikhael (1993). "Asymptotic Invariants of Infinite Groups". Geometric Group Theory. London Mathematical Society Lecture Note Series. 2. Cambridge University Press. ISBN 978-0-521-44680-8. https://books.google.com/books?id=dH02YAfVqkYC. 
  2. 2.0 2.1 Yu, G. (1998). "The Novikov conjecture for groups with finite asymptotic dimension". Annals of Mathematics 147 (2): 325–355. doi:10.2307/121011. 
  3. Bell, G.C.; Dranishnikov, A.N. (2006). "A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory". Transactions of the American Mathematical Society 358 (11): 4749–64. doi:10.1090/S0002-9947-06-04088-8. 
  4. Roe, John (2003). Lectures on Coarse Geometry. University Lecture Series. 31. American Mathematical Society. ISBN 978-0-8218-3332-2. https://books.google.com/books?id=jbsFCAAAQBAJ. 
  5. Dranishnikov, Alexander (2003). "On hypersphericity of manifolds with finite asymptotic dimension". Transactions of the American Mathematical Society 355 (1): 155–167. doi:10.1090/S0002-9947-02-03115-X. 
  6. Dranishnikov, Alexander (2000). "Asymptotic topology" (in Russian). Uspekhi Mat. Nauk 55 (6): 71–16. doi:10.4213/rm334. 
    Dranishnikov, Alexander (2000). "Asymptotic topology". Russian Mathematical Surveys 55 (6): 1085–1129. doi:10.1070/RM2000v055n06ABEH000334. Bibcode2000RuMaS..55.1085D. 
  7. Yu, Guoliang (2000). "The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space". Inventiones Mathematicae 139 (1): 201–240. doi:10.1007/s002229900032. Bibcode2000InMat.139..201Y. 
  8. Roe, John (2005). "Hyperbolic groups have finite asymptotic dimension". Proceedings of the American Mathematical Society 133 (9): 2489–90. doi:10.1090/S0002-9939-05-08138-4. 
  9. Osin, Densi (2005). "Asymptotic dimension of relatively hyperbolic groups". International Mathematics Research Notices 2005 (35): 2143–61. doi:10.1155/IMRN.2005.2143. 
  10. Bell, G.; Dranishnikov, A. (2004). "On asymptotic dimension of groups acting on trees". Geometriae Dedicata 103 (1): 89–101. doi:10.1023/B:GEOM.0000013843.53884.77. 
  11. Bestvina, Mladen; Fujiwara, Koji (2002). "Bounded cohomology of subgroups of mapping class groups". Geometry & Topology 6: 69–89. doi:10.2140/gt.2002.6.69. 
  12. Ji, Lizhen (2004). "Asymptotic dimension and the integral K-theoretic Novikov conjecture for arithmetic groups". Journal of Differential Geometry 68 (3): 535–544. doi:10.4310/jdg/1115669594. https://projecteuclid.org/journals/journal-of-differential-geometry/volume-68/issue-3/Asymptotic-dimension-and-the-integral-K-theoretic-Novikov-conjecture-for/10.4310/jdg/1115669594.pdf. 
  13. Vogtmann, Karen (2015). "On the geometry of Outer space". Bulletin of the American Mathematical Society 52 (1): 27–46. doi:10.1090/S0273-0979-2014-01466-1.  Ch. 9.1

Further reading