BCK algebra
In mathematics, BCI and BCK algebras are algebraic structures in universal algebra, which were introduced by Y. Imai, K. Iséki and S. Tanaka in 1966, that describe fragments of the propositional calculus involving implication known as BCI and BCK logics.
Definition
BCI algebra
An algebra (in the sense of universal algebra) [math]\displaystyle{ \left( X;\ast ,0\right) }[/math] of type [math]\displaystyle{ \left( 2,0\right) }[/math] is called a BCI-algebra if, for any [math]\displaystyle{ x,y,z\in X }[/math], it satisfies the following conditions. (Informally, we may read [math]\displaystyle{ 0 }[/math] as "truth" and [math]\displaystyle{ x\ast y }[/math] as "[math]\displaystyle{ y }[/math] implies [math]\displaystyle{ x }[/math]".)
- BCI-1
- [math]\displaystyle{ \left( \left( x\ast y\right) \ast \left( x\ast z\right) \right) \ast \left( z\ast y\right) =0 }[/math]
- BCI-2
- [math]\displaystyle{ \left( x\ast \left( x\ast y\right) \right) \ast y=0 }[/math]
- BCI-3
- [math]\displaystyle{ x\ast x=0 }[/math]
- BCI-4
- [math]\displaystyle{ x\ast y=0 \land y\ast x=0\implies x=y }[/math]
- BCI-5
- [math]\displaystyle{ x\ast 0=0 \implies x=0 }[/math]
BCK algebra
A BCI-algebra [math]\displaystyle{ \left( X;\ast ,0\right) }[/math] is called a BCK-algebra if it satisfies the following condition:
- BCK-1
- [math]\displaystyle{ \forall x\in X: 0\ast x=0. }[/math]
A partial order can then be defined as x ≤ y iff x * y = 0.
A BCK-algebra is said to be commutative if it satisfies:
- [math]\displaystyle{ x\ast (x\ast y)= y\ast (y\ast x) }[/math]
In a commutative BCK-algebra x * (x * y) = x ∧ y is the greatest lower bound of x and y under the partial order ≤.
A BCK-algebra is said to be bounded if it has a largest element, usually denoted by 1. In a bounded commutative BCK-algebra the least upper bound of two elements satisfies x ∨ y = 1 * ((1 * x) ∧ (1 * y)); that makes it a distributive lattice.
Examples
Every abelian group is a BCI-algebra, with * defined as group subtraction and 0 defined as the group identity.
The subsets of a set form a BCK-algebra, where A*B is the difference A\B (the elements in A but not in B), and 0 is the empty set.
A Boolean algebra is a BCK algebra if A*B is defined to be A∧¬B (A does not imply B).
The bounded commutative BCK-algebras are precisely the MV-algebras.
References
- Angell, R. B. (1970), "Review of several papers on BCI, BCK-Algebras", The Journal of Symbolic Logic 35 (3): 465–466, doi:10.2307/2270728, ISSN 0022-4812
- Arai, Yoshinari; Iséki, Kiyoshi; Tanaka, Shôtarô (1966), "Characterizations of BCI, BCK-algebras", Proc. Japan Acad. 42 (2): 105–107, doi:10.3792/pja/1195522126, http://projecteuclid.org/euclid.pja/1195522126
- Hazewinkel, Michiel, ed. (2001), "BCH algebra", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=B/b110170
- Hazewinkel, Michiel, ed. (2001), "BCI algebra", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=B/b110180
- Hazewinkel, Michiel, ed. (2001), "BCK algebra", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=B/b110190
- Iséki, K.; Tanaka, S. (1978), "An introduction to the theory of BCK-algebras", Math. Japon. 23: 1–26
- Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
- Imai, Y.; Iséki, K (1966), "On axiom systems of propositional calculi, XIV", Proc. Japan Acad. Ser. A Math. Sci. 42: 19–22, doi:10.3792/pja/1195522169, http://projecteuclid.org/euclid.pja/1195522169
- Iséki, K. (1966), "An algebra related with a propositional calculus", Proc. Japan Acad. Ser. A Math. Sci. 42: 26–29, doi:10.3792/pja/1195522171, http://projecteuclid.org/euclid.pja/1195522171
![]() | Original source: https://en.wikipedia.org/wiki/BCK algebra.
Read more |