Babenko–Beckner inequality
In mathematics, the Babenko–Beckner inequality (after Konstantin I. Babenko (ru) and William E. Beckner) is a sharpened form of the Hausdorff–Young inequality having applications to uncertainty principles in the Fourier analysis of Lp spaces. The (q, p)-norm of the n-dimensional Fourier transform is defined to be[1]
- [math]\displaystyle{ \|\mathcal F\|_{q,p} = \sup_{f\in L^p(\mathbb R^n)} \frac{\|\mathcal Ff\|_q}{\|f\|_p},\text{ where }1 \lt p \le 2,\text{ and }\frac 1 p + \frac 1 q = 1. }[/math]
In 1961, Babenko[2] found this norm for even integer values of q. Finally, in 1975, using Hermite functions as eigenfunctions of the Fourier transform, Beckner[3] proved that the value of this norm for all [math]\displaystyle{ q \ge 2 }[/math] is
- [math]\displaystyle{ \|\mathcal F\|_{q,p} = \left(p^{1/p}/q^{1/q}\right)^{n/2}. }[/math]
Thus we have the Babenko–Beckner inequality that
- [math]\displaystyle{ \|\mathcal Ff\|_q \le \left(p^{1/p}/q^{1/q}\right)^{n/2} \|f\|_p. }[/math]
To write this out explicitly, (in the case of one dimension,) if the Fourier transform is normalized so that
- [math]\displaystyle{ g(y) \approx \int_{\mathbb R} e^{-2\pi ixy} f(x)\,dx\text{ and }f(x) \approx \int_{\mathbb R} e^{2\pi ixy} g(y)\,dy, }[/math]
then we have
- [math]\displaystyle{ \left(\int_{\mathbb R} |g(y)|^q \,dy\right)^{1/q} \le \left(p^{1/p}/q^{1/q}\right)^{1/2} \left(\int_{\mathbb R} |f(x)|^p \,dx\right)^{1/p} }[/math]
or more simply
- [math]\displaystyle{ \left(\sqrt q \int_{\mathbb R} |g(y)|^q \,dy\right)^{1/q} \le \left(\sqrt p \int_{\mathbb R} |f(x)|^p \,dx\right)^{1/p}. }[/math]
Main ideas of proof
Throughout this sketch of a proof, let
- [math]\displaystyle{ 1 \lt p \le 2, \quad \frac 1 p + \frac 1 q = 1, \quad \text{and} \quad \omega = \sqrt{1-p} = i\sqrt{p-1}. }[/math]
(Except for q, we will more or less follow the notation of Beckner.)
The two-point lemma
Let [math]\displaystyle{ d\nu(x) }[/math] be the discrete measure with weight [math]\displaystyle{ 1/2 }[/math] at the points [math]\displaystyle{ x = \pm 1. }[/math] Then the operator
- [math]\displaystyle{ C:a+bx \rightarrow a + \omega bx }[/math]
maps [math]\displaystyle{ L^p(d\nu) }[/math] to [math]\displaystyle{ L^q(d\nu) }[/math] with norm 1; that is,
- [math]\displaystyle{ \left[\int|a+\omega bx|^q d\nu(x)\right]^{1/q} \le \left[\int|a+bx|^p d\nu(x)\right]^{1/p}, }[/math]
or more explicitly,
- [math]\displaystyle{ \left[\frac {|a+\omega b|^q + |a-\omega b|^q} 2 \right]^{1/q} \le \left[\frac {|a+b|^p + |a-b|^p} 2 \right]^{1/p} }[/math]
for any complex a, b. (See Beckner's paper for the proof of his "two-point lemma".)
A sequence of Bernoulli trials
The measure [math]\displaystyle{ d\nu }[/math] that was introduced above is actually a fair Bernoulli trial with mean 0 and variance 1. Consider the sum of a sequence of n such Bernoulli trials, independent and normalized so that the standard deviation remains 1. We obtain the measure [math]\displaystyle{ d\nu_n(x) }[/math] which is the n-fold convolution of [math]\displaystyle{ d\nu(\sqrt n x) }[/math] with itself. The next step is to extend the operator C defined on the two-point space above to an operator defined on the (n + 1)-point space of [math]\displaystyle{ d\nu_n(x) }[/math] with respect to the elementary symmetric polynomials.
Convergence to standard normal distribution
The sequence [math]\displaystyle{ d\nu_n(x) }[/math] converges weakly to the standard normal probability distribution [math]\displaystyle{ d\mu(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}\, dx }[/math] with respect to functions of polynomial growth. In the limit, the extension of the operator C above in terms of the elementary symmetric polynomials with respect to the measure [math]\displaystyle{ d\nu_n(x) }[/math] is expressed as an operator T in terms of the Hermite polynomials with respect to the standard normal distribution. These Hermite functions are the eigenfunctions of the Fourier transform, and the (q, p)-norm of the Fourier transform is obtained as a result after some renormalization.
See also
References
- ↑ Iwo Bialynicki-Birula. Formulation of the uncertainty relations in terms of the Renyi entropies. arXiv:quant-ph/0608116v2
- ↑ K.I. Babenko. An inequality in the theory of Fourier integrals. Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961) pp. 531–542 English transl., Amer. Math. Soc. Transl. (2) 44, pp. 115–128
- ↑ W. Beckner, Inequalities in Fourier analysis. Annals of Mathematics, Vol. 102, No. 6 (1975) pp. 159–182.
Original source: https://en.wikipedia.org/wiki/Babenko–Beckner inequality.
Read more |