Bateman polynomials

From HandWiki

In mathematics, the Bateman polynomials are a family Fn of orthogonal polynomials introduced by Bateman (1933). The Bateman–Pasternack polynomials are a generalization introduced by (Pasternack 1939). Bateman polynomials can be defined by the relation

[math]\displaystyle{ F_n\left(\frac{d}{dx}\right)\operatorname{sech}(x) = \operatorname{sech}(x)P_n(\tanh(x)). }[/math]

where Pn is a Legendre polynomial. In terms of generalized hypergeometric functions, they are given by

[math]\displaystyle{ F_n(x)={}_3F_2\left(\begin{array}{c}-n,~n+1,~\tfrac12(x+1)\\ 1,~1 \end{array}; 1\right). }[/math]

(Pasternack 1939) generalized the Bateman polynomials to polynomials Fmn with

[math]\displaystyle{ F_n^m\left(\frac{d}{dx}\right)\operatorname{sech}^{m+1}(x) = \operatorname{sech}^{m+1}(x)P_n(\tanh(x)) }[/math]

These generalized polynomials also have a representation in terms of generalized hypergeometric functions, namely

[math]\displaystyle{ F_n^m(x)={}_3F_2\left(\begin{array}{c}-n,~n+1,~\tfrac12(x+m+1)\\ 1,~m+1 \end{array}; 1\right). }[/math]

(Carlitz 1957) showed that the polynomials Qn studied by (Touchard 1956) , see Touchard polynomials, are the same as Bateman polynomials up to a change of variable: more precisely

[math]\displaystyle{ Q_n(x)=(-1)^n2^nn!\binom{2n}{n}^{-1}F_n(2x+1) }[/math]

Bateman and Pasternack's polynomials are special cases of the symmetric continuous Hahn polynomials.

Examples

The polynomials of small n read

[math]\displaystyle{ F_0(x)=1 }[/math];
[math]\displaystyle{ F_1(x)=-x }[/math];
[math]\displaystyle{ F_2(x)=\frac{1}{4}+\frac{3}{4}x^2 }[/math];
[math]\displaystyle{ F_3(x)=-\frac{7}{12}x-\frac{5}{12}x^3 }[/math];
[math]\displaystyle{ F_4(x)=\frac{9}{64}+\frac{65}{96}x^2+\frac{35}{192}x^4 }[/math];
[math]\displaystyle{ F_5(x)=-\frac{407}{960}x-\frac{49}{96}x^3-\frac{21}{320}x^5 }[/math];

Properties

Orthogonality

The Bateman polynomials satisfy the orthogonality relation[1][2]

[math]\displaystyle{ \int_{-\infty}^{\infty}F_m(ix)F_n(ix)\operatorname{sech}^2\left(\frac{\pi x}{2}\right)\,dx = \frac{4(-1)^n}{\pi(2n+1)}\delta_{mn}. }[/math]

The factor [math]\displaystyle{ (-1)^n }[/math] occurs on the right-hand side of this equation because the Bateman polynomials as defined here must be scaled by a factor [math]\displaystyle{ i^n }[/math] to make them remain real-valued for imaginary argument. The orthogonality relation is simpler when expressed in terms of a modified set of polynomials defined by [math]\displaystyle{ B_n(x)=i^nF_n(ix) }[/math], for which it becomes

[math]\displaystyle{ \int_{-\infty}^{\infty}B_m(x)B_n(x)\operatorname{sech}^2\left(\frac{\pi x}{2}\right)\,dx = \frac{4}{\pi(2n+1)}\delta_{mn}. }[/math]

Recurrence relation

The sequence of Bateman polynomials satisfies the recurrence relation[3]

[math]\displaystyle{ (n+1)^2F_{n+1}(z)=-(2n+1)zF_n(z) + n^2F_{n-1}(z). }[/math]

Generating function

The Bateman polynomials also have the generating function

[math]\displaystyle{ \sum_{n=0}^{\infty}t^nF_n(z)=(1-t)^z\,_2F_1\left(\frac{1+z}{2},\frac{1+z}{2};1;t^2\right), }[/math]

which is sometimes used to define them.[4]

References

  1. Koelink (1996)
  2. Bateman, H. (1934), "The polynomial [math]\displaystyle{ F_n(x) }[/math]", Ann. Math. 35 (4): 767-775.
  3. Bateman (1933), p. 28.
  4. Bateman (1933), p. 23.