Touchard polynomials

From HandWiki
Short description: Sequence of polynomials


The Touchard polynomials, studied by Jacques Touchard (1939), also called the exponential polynomials or Bell polynomials, comprise a polynomial sequence of binomial type defined by

[math]\displaystyle{ T_n(x)=\sum_{k=0}^n S(n,k)x^k=\sum_{k=0}^n \left\{ {n \atop k} \right\}x^k, }[/math]

where [math]\displaystyle{ S(n,k)=\left\{ {n \atop k} \right\} }[/math]is a Stirling number of the second kind, i.e., the number of partitions of a set of size n into k disjoint non-empty subsets.[1][2][3][4]

The first few Touchard polynomials are

[math]\displaystyle{ T_1(x)=x, }[/math]
[math]\displaystyle{ T_2(x)=x^2+x, }[/math]
[math]\displaystyle{ T_3(x)=x^3+3x^2+x, }[/math]
[math]\displaystyle{ T_4(x)=x^4+6x^3+7x^2+x, }[/math]
[math]\displaystyle{ T_5(x)=x^5+10x^4+25x^3+15x^2+x. }[/math]

Properties

Basic properties

The value at 1 of the nth Touchard polynomial is the nth Bell number, i.e., the number of partitions of a set of size n:

[math]\displaystyle{ T_n(1)=B_n. }[/math]

If X is a random variable with a Poisson distribution with expected value λ, then its nth moment is E(Xn) = Tn(λ), leading to the definition:

[math]\displaystyle{ T_{n}(x)=e^{-x}\sum_{k=0}^\infty \frac {x^k k^n} {k!}. }[/math]

Using this fact one can quickly prove that this polynomial sequence is of binomial type, i.e., it satisfies the sequence of identities:

[math]\displaystyle{ T_n(\lambda+\mu)=\sum_{k=0}^n {n \choose k} T_k(\lambda) T_{n-k}(\mu). }[/math]

The Touchard polynomials constitute the only polynomial sequence of binomial type with the coefficient of x equal 1 in every polynomial.

The Touchard polynomials satisfy the Rodrigues-like formula:

[math]\displaystyle{ T_n \left(e^x \right) = e^{-e^x} \frac{d^n}{dx^n}\;e^{e^x}. }[/math]

The Touchard polynomials satisfy the recurrence relation

[math]\displaystyle{ T_{n+1}(x)=x \left(1+\frac{d}{dx} \right)T_{n}(x) }[/math]

and

[math]\displaystyle{ T_{n+1}(x)=x\sum_{k=0}^n{n \choose k}T_k(x). }[/math]

In the case x = 1, this reduces to the recurrence formula for the Bell numbers.

A generalization of both this formula and the definition, is a generalization of Spivey's formula[5]

[math]\displaystyle{ T_{n+m}(x) = \sum_{k=0}^n \left\{ {n \atop k} \right\} x^k \sum_{j=0}^m \binom{m}{j} k^{m-j} T_j(x) }[/math]

Using the umbral notation Tn(x)=Tn(x), these formulas become:

[math]\displaystyle{ T_n(\lambda+\mu)=\left(T(\lambda)+T(\mu) \right)^n, }[/math]
[math]\displaystyle{ T_{n+1}(x)=x \left(1+T(x) \right)^n. }[/math]

The generating function of the Touchard polynomials is

[math]\displaystyle{ \sum_{n=0}^\infty {T_n(x) \over n!} t^n=e^{x\left(e^t-1\right)}, }[/math]

which corresponds to the generating function of Stirling numbers of the second kind.

Touchard polynomials have contour integral representation:

[math]\displaystyle{ T_n(x)=\frac{n!}{2\pi i}\oint\frac{e^{x({e^t}-1)}}{t^{n+1}}\,dt. }[/math]

Zeroes

All zeroes of the Touchard polynomials are real and negative. This fact was observed by L. H. Harper in 1967.[6]

The absolute value of the leftmost zero is bounded from above by[7]

[math]\displaystyle{ \frac1n\binom{n}{2}+\frac{n-1}{n}\sqrt{\binom{n}{2}^2-\frac{2n}{n-1}\left(\binom{n}{3}+3\binom{n}{4}\right)}, }[/math]

although it is conjectured that the leftmost zero grows linearly with the index n.

The Mahler measure [math]\displaystyle{ M(T_n) }[/math]of the Touchard polynomials can be estimated as follows:[8]

[math]\displaystyle{ \frac{\lbrace\textstyle{n\atop \Omega_n}\rbrace}{\binom{n}{\Omega_n}}\le M(T_n)\le\sqrt{n+1}\left\{{n\atop K_n}\right\}, }[/math]

where [math]\displaystyle{ \Omega_n }[/math] and [math]\displaystyle{ K_n }[/math] are the smallest of the maximum two k indices such that [math]\displaystyle{ \lbrace\textstyle{n\atop k}\rbrace/\binom{n}{k} }[/math] and [math]\displaystyle{ \lbrace\textstyle{n\atop k}\rbrace }[/math] are maximal, respectively.

Generalizations

  • Complete Bell polynomial [math]\displaystyle{ B_n(x_1,x_2,\dots,x_n) }[/math] may be viewed as a multivariate generalization of Touchard polynomial [math]\displaystyle{ T_n(x) }[/math], since [math]\displaystyle{ T_n(x) = B_n(x,x,\dots,x). }[/math]
  • The Touchard polynomials (and thereby the Bell numbers) can be generalized, using the real part of the above integral, to non-integer order:
    [math]\displaystyle{ T_n(x)=\frac{n!}{\pi} \int^{\pi}_0 e^{x \bigl(e^{\cos(\theta)} \cos(\sin(\theta))-1 \bigr)} \cos \bigl(x e^{\cos(\theta)} \sin(\sin(\theta)) -n\theta\bigr) \, d\theta\, . }[/math]

See also

References

  1. Roman, Steven (1984). The Umbral Calculus. Dover. ISBN 0-486-44139-3. 
  2. Boyadzhiev, Khristo N. (2009). "Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals". Abstract and Applied Analysis 2009: 1–18. doi:10.1155/2009/168672. Bibcode2009AbApA2009....1B. 
  3. Brendt, Bruce C. "RAMANUJAN REACHES HIS HAND FROM HIS GRAVE TO SNATCH YOUR THEOREMS FROM YOU". http://www.math.uiuc.edu/~berndt/articles/gravesnatching.pdf. Retrieved 23 November 2013. 
  4. Weisstein, Eric W.. "Bell Polynomial". http://mathworld.wolfram.com/BellPolynomial.html. 
  5. "Implications of Spivey's Bell Number Formula". https://cs.uwaterloo.ca/journals/JIS/VOL11/Gould/gould35.html. 
  6. Harper, L. H. (1967). "Stirling behavior is asymptotically normal". The Annals of Mathematical Statistics 38 (2): 410–414. doi:10.1214/aoms/1177698956. 
  7. Mező, István; Corcino, Roberto B. (2015). "The estimation of the zeros of the Bell and r-Bell polynomials". Applied Mathematics and Computation 250: 727–732. doi:10.1016/j.amc.2014.10.058. 
  8. István, Mező. "On the Mahler measure of the Bell polynomials". https://sites.google.com/site/istvanmezo81/others. Retrieved 7 November 2017.