Beta-dual space
From HandWiki
In functional analysis and related areas of mathematics, the beta-dual or β-dual is a certain linear subspace of the algebraic dual of a sequence space.
Definition
Given a sequence space X the β-dual of X is defined as
- [math]\displaystyle{ X^{\beta}:= \left \{ x \in\mathbb{K}^\mathbb{N}\ : \ \sum_{i=1}^{\infty} x_i y_i\text{ converges }\quad \forall y \in X \right \}. }[/math]
If X is an FK-space then each y in Xβ defines a continuous linear form on X
- [math]\displaystyle{ f_y(x) := \sum_{i=1}^{\infty} x_i y_i \qquad x \in X. }[/math]
Examples
- [math]\displaystyle{ c_0^\beta = \ell^1 }[/math]
- [math]\displaystyle{ (\ell^1)^\beta = \ell^\infty }[/math]
- [math]\displaystyle{ \omega^\beta = \{0\} }[/math]
Properties
The beta-dual of an FK-space E is a linear subspace of the continuous dual of E. If E is an FK-AK space then the beta dual is linear isomorphic to the continuous dual.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (04-August) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Beta-dual space.
Read more |