Bickley–Naylor functions

From HandWiki
Fonction Bickley-Naylor.png

In physics, engineering, and applied mathematics, the Bickley–Naylor functions are a sequence of special functions arising in formulas for thermal radiation intensities in hot enclosures. The solutions are often quite complicated unless the problem is essentially one-dimensional[1] (such as the radiation field in a thin layer of gas between two parallel rectangular plates). These functions have practical applications in several engineering problems related to transport of thermal[2][3] or neutron,[4][5] radiation in systems with special symmetries (e.g. spherical or axial symmetry). W. G. Bickley was a British mathematician born in 1893.[6]

Definition

The nth Bickley−Naylor function [math]\displaystyle{ \operatorname{Ki}_n(x) }[/math] is defined by

[math]\displaystyle{ \operatorname{Ki}_n (x) = \int_0^{\pi/2} e^{-x/\cos \theta}\cos^{n-1}\theta \, d\theta. }[/math]

and it is classified as one of the generalized exponential integral functions.

All of the functions [math]\displaystyle{ \operatorname{Ki}_n(x) }[/math] for positive integer n are monotonously decreasing functions, because [math]\displaystyle{ e^{-x} }[/math] is a decreasing function and [math]\displaystyle{ \sin x }[/math] is a positive increasing function for [math]\displaystyle{ x\in (0,\pi /2) }[/math].

Properties

The integral defining the function [math]\displaystyle{ \operatorname{Ki}_n(x) }[/math] generally cannot be evaluated analytically, but can be approximated to a desired accuracy with Riemann sums or other methods, taking the limit as a → 0 in the interval of integration, [aπ/2].

Alternative ways to define the function [math]\displaystyle{ \operatorname{Ki}_n(x) }[/math] include the integral,[7] integral forms the Bickley-Naylor function:

[math]\displaystyle{ \operatorname{Ki}_n (x) = \int_0^{\pi/2} e^{-x/\cos \theta}\cos^{n-1}\theta \, d\theta. }[/math]
[math]\displaystyle{ \operatorname{Ki}_n (x) = \int_0^\infty \frac{e^{-x\cosh t}}{\cosh^n t} \, dt. }[/math]
[math]\displaystyle{ \operatorname{Ki}_n (x)=\int_1^\infty \frac{e^{-xt}dt}{t^n \sqrt{t^2-1}} }[/math]
[math]\displaystyle{ \operatorname{Ki}_n (x) =\frac{1}{(n-1)!}\int_x^\infty (t-x)^{n-1}K_0(t)dt. }[/math]
[math]\displaystyle{ \frac{\operatorname{Ki}_n (x)}{x^n}=\frac{1}{(n-1)!}\int_1^\infty (t-1)^{n-1}K_0(xt)dt. }[/math]

where [math]\displaystyle{ \operatorname{K}_0(x) }[/math] is the modified Bessel function of the zeroth order. Also by definition we have [math]\displaystyle{ \operatorname{Ki}_0(x)=\operatorname{K}_0(x) }[/math].

Series expansions

The series expansions of the first and second order Bickley functions are given by:

[math]\displaystyle{ \operatorname{Ki}_1 (x)=\frac{\pi}{2}+x\left(\gamma+\ln\left(\frac{x}{2}\right)\right) \sum_{k=0}^\infty\frac{(x^2/4)^k}{(k!)^2(2k+1)}-x \sum_{k=0}^\infty\frac{(x^2/4)^k}{(k!)^2(2k+1)^2} -x\sum_{k=1}^\infty\frac{(x^2/4)^k\Phi(k+1)}{(k!)^2(2k+1)} }[/math]
[math]\displaystyle{ \operatorname{Ki}_2 (x)=1-\frac{\pi}{2}x-\frac{x^2}{2}\left(\gamma+\ln\left(\frac{x}{2}\right)\right)\sum_{k=0}^\infty\frac{(x^2/4)^k}{k!(k+1)!(2k+1)}+\frac{x^2}{4}\sum_{k=0}^\infty\frac{(4k+3)(x^2/4)^k}{k!(k+1)!(2k+1)^2}+\frac{x^2}{2}\sum_{k=1}^\infty\frac{(x^2/4)^k\Phi(k+1)}{k!(k+1)!(2k+1)} }[/math]

where γ is the Euler constant and

[math]\displaystyle{ \Phi(k+1)=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k} }[/math]

Recurrence relation

The Bickley functions also satisfy the following recurrence relation:[8]

[math]\displaystyle{ n \operatorname{Ki}_{n+1}(x)=(n-1)\operatorname{Ki}_{n-1}(x)-x \operatorname{Ki}_n(x)+x \operatorname{Ki}_{n-2}(x),~~~~~n\ge 2 }[/math]

where [math]\displaystyle{ \operatorname{Ki}_0(x)=\operatorname{K}_0(x) }[/math].

Asymptotic expansions

The asymptotic expansions of Bickley functions are given as[9]

[math]\displaystyle{ \operatorname{Ki}_n(x)\approx\sqrt{\frac{\pi}{2x}}e^{-x}\left\{1-\frac{(1+4n)}{8x}+\frac{3(3+24n+16n^2)}{12 8x^2}\right\} }[/math]
for [math]\displaystyle{ x \gg 1 }[/math]

Successive differentiation

Differentiating [math]\displaystyle{ Ki_{n+1}(x) }[/math] with respect to x gives

[math]\displaystyle{ \frac{d}{dx}\operatorname{Ki}_{n+1}(x)=-\operatorname{Ki}_n(x) }[/math]

Successive differentiation yields

[math]\displaystyle{ \frac{d^n}{dx^n}\operatorname{Ki}_n(x)=(-1)^n\operatorname{K}_0(x) }[/math]

The values of these functions for different values of the argument x were often listed in tables of special functions in the era when numerical calculation of integrals was slow. A table that lists some approximate values of the three first functions Kin is shown below.

[math]\displaystyle{ x }[/math] [math]\displaystyle{ \operatorname{Ki}_1(x) }[/math] [math]\displaystyle{ \operatorname{Ki}_2(x) }[/math] [math]\displaystyle{ \operatorname{Ki}_3(x) }[/math]
0 1.570796327 1.000000000 0.785398162
0.1 1.22863188 0.862521290 0.692543328
0.2 1.023679877 0.750458533 0.612064472
0.3 0.868832269 0.656147929 0.541862953
0.4 0.745203394 0.575660412 0.480375442
0.5 0.643693806 0.506373657 0.426358257
0.6 0.558890473 0.446366680 0.378791860
0.7 0.487198347 0.394159632 0.336825253
0.8 0.426061805 0.348575863 0.299739399
0.9 0.373578804 0.308659297 0.266921357
1.0 0.328286478 0.273620752 0.237845082
1.2 0.254888907 0.21564418 0.189162878
1.4 0.199050709 0.17049927 0.150734408
1.6 0.156156459 0.135163924 0.120310892
1.8 0.122960838 0.107392071 0.096165816
2.0 0.097120592 0.085490579 0.076963590
2.5 0.054422478 0.048670845 0.044307124
3.0 0.030848237 0.027924583 0.025646500
3.5 0.017634408 0.016117448 0.014909740
4.0 0.010146756 0.009346971 0.008698789
4.5 0.005868829 0.005441695 0.005090280
5.0 0.003408936 0.003178387 0.002986247
6.0 0.001161774 0.001092877 0.001034238
7.0 0.000400052 0.000378912 0.000360620
8.0 0.000138841 0.000132222 0.000126417
9.0 0.000048484 0.000046377 0.000044509
10 0.000017015 0.000016336 0.000015728

Computer code

Computer code in Fortran is made available by Amos.[10]

See also

References

  1. Michael F. Modest, Radiative Heat Transfer, p. 282, Elsevier Science 2003
  2. Z. Altaç, Exact series expansions, recurrence relations, properties and integrals of the generalized exponential integral functions, Journal of Quantitative Spectroscopy & Radiative Transfer 104 (2007) 310–325
  3. Z. Altaç, Integrals Involving Bickley and Bessel Functions in Radiative Transfer, and Generalized Exponential Integral Functions, J. Heat Transfer 118(3), 789−792 (August 1, 1996)
  4. T. Boševski, An Improved Collision Probability Method for Thermal-Neutron-Flux Calculation in a Cylindrical Reactor Cell, NUCLEAR SCIENCE AND ENGINEERING:. 42, 23−27 (1970)
  5. E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport, John Wiley Sons, 1984.
  6. G. S. Marliss W. A. Murray, William G. Bickley—An appreciation, Comput J (1969) 12 (4): 301–302.
  7. A. Baricz, T. K. Pogany, Functional Inequalities for the Bickley Function, Mathematical Inequalities and Applications, Volume 17, Number 3 (2014), 989–1003
  8. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, pp. 483, Dover Publications Inc., (1972).
  9. M. S. Milgram, Analytic method for the numerical solution of the integral transport equation for a homogeneous cylinder, Nucl. Sci. Eng. 68, 249-269 (1978).
  10. D. E. Amos, ALGORITH 609: A portable FORTRAN Subroutine for the Bickley Functions Kin(x), ACM Transactions on Mathematical Software, December 1983, 789−792