Biography:Anders Krogh

From HandWiki
Anders Krogh
NationalityDenmark
Alma materUniversity of Copenhagen
Known forhidden Markov models, neural networks
AwardsISCB Fellow (2017)
Scientific career
FieldsBioinformatics
InstitutionsUniversity of Copenhagen
Websitepeople.binf.ku.dk/krogh

Anders Krogh is a bioinformatician at the University of Copenhagen,[1] where he leads the university's bioinformatics center. He is known for his pioneering work on the use of hidden Markov models in bioinformatics (together with David Haussler),[2][3][4] and is co-author of a widely used textbook in bioinformatics.[5] In addition, he also co-authored one of the early textbooks on neural networks.[6] His current research interests include promoter analysis,[7][8][9] non-coding RNA,[10][11][12] gene prediction[13][14][15] and protein structure prediction.[16][17][18][19][20]

In 2017, Krogh was elected a Fellow of the International Society for Computational Biology (ISCB).[21]

References

  1. "Archived copy". Archived from the original on 2011-09-02. https://web.archive.org/web/20110902094343/http://wiki.binf.ku.dk/User%3AKrogh. Retrieved 2011-04-14.  Professor Anders Krogh, The Bioinformatics Centre, Department of Molecuar Biology, University of Copenhagen
  2. "Hidden Markov models in computational biology. Applications to protein modeling". J. Mol. Biol. 235 (5): 1501–31. 1994. doi:10.1006/jmbi.1994.1104. PMID 8107089. 
  3. "A hidden Markov model that finds genes in E. coli DNA". Nucleic Acids Res. 22 (22): 4768–78. 1994. doi:10.1093/nar/22.22.4768. PMID 7984429. 
  4. Sjölander K; Karplus K; Brown M et al. (1996). "Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology". Comput. Appl. Biosci. 12 (4): 327–45. doi:10.1093/bioinformatics/12.4.327. PMID 8902360. 
  5. Durbin, Richard M.; Eddy, Sean R.; Krogh, Anders; Mitchison, Graeme (1998), Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (1st ed.), Cambridge, New York: Cambridge University Press, doi:10.2277/0521629713, ISBN 0-521-62971-3, OCLC 593254083, http://www.cambridge.org/gb/knowledge/isbn/item1158701 
  6. Introduction to the Theory of Neural Computation (Santa Fe Institute Studies in the Sciences of Complexity). (1991) John A. Hertz, Richard G. Palmer, Anders Krogh, Westview Press
  7. Marstrand TT; Frellsen J; Moltke I et al. (2008). Copley, Richard. ed. "Asap: A Framework for Over-Representation Statistics for Transcription Factor Binding Sites". PLoS ONE 3 (2): e1623. doi:10.1371/journal.pone.0001623. PMID 18286180. Bibcode2008PLoSO...3.1623M.  open access
  8. "A code for transcription initiation in mammalian genomes". Genome Res. 18 (1): 1–12. 2008. doi:10.1101/gr.6831208. PMID 18032727. 
  9. Bryne JC; Valen E; Tang MH et al. (2008). "JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update". Nucleic Acids Res. 36 (Database issue): D102–6. doi:10.1093/nar/gkm955. PMID 18006571. 
  10. "Intragenomic Matching Reveals a Huge Potential for miRNA-Mediated Regulation in Plants". PLoS Comput. Biol. 3 (11): e238. 2007. doi:10.1371/journal.pcbi.0030238. PMID 18052543. Bibcode2007PLSCB...3..238L.  open access
  11. "MASTR: multiple alignment and structure prediction of non-coding RNAs using simulated annealing". Bioinformatics 23 (24): 3304–11. 2007. doi:10.1093/bioinformatics/btm525. PMID 18006551. 
  12. "Measuring covariation in RNA alignments: physical realism improves information measures". Bioinformatics 22 (24): 2988–95. 2006. doi:10.1093/bioinformatics/btl514. PMID 17038338. 
  13. "Automatic generation of gene finders for eukaryotic species". BMC Bioinformatics 7: 263. 2006. doi:10.1186/1471-2105-7-263. PMID 16712739.  open access
  14. "A hidden Markov model approach for determining expression from genomic tiling micro arrays". BMC Bioinformatics 7: 239. 2006. doi:10.1186/1471-2105-7-239. PMID 16672042.  open access
  15. "Large-scale prokaryotic gene prediction and comparison to genome annotation". Bioinformatics 21 (24): 4322–9. 2005. doi:10.1093/bioinformatics/bti701. PMID 16249266. 
  16. "Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes". J Mol Biol 305 (3): 567–580. 2001. doi:10.1006/jmbi.2000.4315. PMID 11152613. 
  17. "Teaching computers to fold proteins". Phys. Rev. E 70 (3): 030903. 2004. doi:10.1103/PhysRevE.70.030903. PMID 15524499. Bibcode2004PhRvE..70c0903W. 
  18. "An evolutionary method for learning HMM structure: prediction of protein secondary structure". BMC Bioinformatics 8: 357. 2007. doi:10.1186/1471-2105-8-357. PMID 17888163.  open access
  19. "Sampling Realistic Protein Conformations Using Local Structural Bias". PLoS Comput. Biol. 2 (9): e131. 2006. doi:10.1371/journal.pcbi.0020131. PMID 17002495. Bibcode2006PLSCB...2..131H.  open access
  20. "A generative, probabilistic model of local protein structure". PNAS 105 (26): 8932–8937. 2008. doi:10.1073/pnas.0801715105. PMID 18579771. Bibcode2008PNAS..105.8932B. 
  21. "February 13, 2017: The International Society for Computational Biology Names Seven Members as the ISCB Fellows Class of 2017". https://www.iscb.org/iscb-news-items/3067-2017-feb13-iscb-fellows-class-2017. Retrieved 13 February 2017. 

External links