Biology:Eukaryotic translation initiation factor 4 gamma 1

From HandWiki
A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

Eukaryotic translation initiation factor 4 gamma 1 is a protein that in humans is encoded by the EIF4G1 gene.[1][2]

Function

The protein encoded by this gene is a component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure, and recruitment of mRNA to the ribosome. Alternative splicing results in five transcript variants encoding four distinct isoforms.[3] eIF4G serves as a scaffold, interacting with mRNA and the other components of the eIF4F complex, as well as the PABP and eIF3.

Interactions

Eukaryotic translation initiation factor 4 gamma has been shown to interact with MKNK1,[4] EIF4A1,[5][6][7] EIF4E,[6][7][8][9][10] MKNK2[11] and PABPC1.[12]

See also

References

  1. "Amino acid sequence of the human protein synthesis initiation factor eIF-4 gamma". The Journal of Biological Chemistry 267 (32): 23226–31. Nov 1992. doi:10.1016/S0021-9258(18)50080-6. PMID 1429670. 
  2. "Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A". Molecular and Cellular Biology 17 (12): 6940–7. Dec 1997. doi:10.1128/mcb.17.12.6940. PMID 9372926. 
  3. "Entrez Gene: EIF4G1 eukaryotic translation initiation factor 4 gamma, 1". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1981. 
  4. "Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E". The EMBO Journal 18 (1): 270–9. Jan 1999. doi:10.1093/emboj/18.1.270. PMID 9878069. 
  5. "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology 3 (1): 89. 2007. doi:10.1038/msb4100134. PMID 17353931. 
  6. 6.0 6.1 "Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells". Molecular and Cellular Biology 26 (10): 3955–65. May 2006. doi:10.1128/MCB.26.10.3955-3965.2006. PMID 16648488. 
  7. 7.0 7.1 "mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin". The EMBO Journal 25 (8): 1659–68. Apr 2006. doi:10.1038/sj.emboj.7601047. PMID 16541103. 
  8. "Amino acid-induced stimulation of translation initiation in rat skeletal muscle". The American Journal of Physiology 277 (6 Pt 1): E1077–86. Dec 1999. doi:10.1152/ajpendo.1999.277.6.E1077. PMID 10600798. 
  9. "The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins". Molecular and Cellular Biology 15 (9): 4990–7. Sep 1995. doi:10.1128/MCB.15.9.4990. PMID 7651417. 
  10. "Regulation of the rapamycin and FKBP-target 1/mammalian target of rapamycin and cap-dependent initiation of translation by the c-Abl protein-tyrosine kinase". The Journal of Biological Chemistry 275 (15): 10779–87. Apr 2000. doi:10.1074/jbc.275.15.10779. PMID 10753870. 
  11. "The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization". Molecular and Cellular Biology 23 (16): 5692–705. Aug 2003. doi:10.1128/MCB.23.16.5692-5705.2003. PMID 12897141. 
  12. "A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation". The EMBO Journal 17 (24): 7480–9. Dec 1998. doi:10.1093/emboj/17.24.7480. PMID 9857202. 

Further reading