From HandWiki
A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

GLUT5 is a fructose transporter expressed on the apical border of enterocytes in the small intestine.[1] GLUT5 allows for fructose to be transported from the intestinal lumen into the enterocyte by facilitated diffusion due to fructose's high concentration in the intestinal lumen. GLUT5 is also expressed in skeletal muscle,[2] testis, kidney, fat tissue (adipocytes), and brain.[3]

Fructose malabsorption or Dietary Fructose Intolerance is a dietary disability of the small intestine, where the amount of fructose carrier in enterocytes is deficient.[4]

In humans the GLUT5 protein is encoded by the SLC2A5 gene.[5]


Fructose uptake rate by GLUT5 is significantly affected by diabetes mellitus, hypertension, obesity, fructose malabsorption, and inflammation. However, age-related changes in fructose intake capability are not explained by the rate of expression of GLUT5.[6][7][8] The absorption of fructose in the simultaneous presence of glucose is improved, while sorbitol is inhibitory.[9] Fructose absorption by GLUT5 can be investigated using intestinal organoids.[10][11]

Interactive pathway map


  1. "The SLC2 family of facilitated hexose and polyol transporters". Pflügers Archiv: European Journal of Physiology 447 (5): 480–9. February 2004. doi:10.1007/s00424-003-1085-0. PMID 12750891. 
  2. "GLUT5 expression and fructose transport in human skeletal muscle". Advances in Experimental Medicine and Biology 441: 35–45. 1998. doi:10.1007/978-1-4899-1928-1_4. ISBN 978-1-4899-1930-4. PMID 9781312. 
  3. "Regulation of the fructose transporter GLUT5 in health and disease". American Journal of Physiology. Endocrinology and Metabolism 295 (2): E227–37. August 2008. doi:10.1152/ajpendo.90245.2008. PMID 18398011. 
  4. "Slc2a5 (Glut5) Is Essential for the Absorption of Fructose in the Intestine and Generation of Fructose-induced Hypertension". The Journal of Biological Chemistry 284 (8): 5056–66. February 2009. doi:10.1074/jbc.M808128200. PMID 19091748. 
  5. "Physical mapping of the CA6, ENO1, and SLC2A5 (GLUT5) genes and reassignment of SLC2A5 to 1p36.2". Cytogenetics and Cell Genetics 81 (1): 60–4. 1998. doi:10.1159/000014989. PMID 9691177. 
  6. "Regulation of the fructose transporter GLUT5 in health and disease". Am. J. Physiol. Endocrinol. Metab. 295 (2): E227–37. August 2008. doi:10.1152/ajpendo.90245.2008. PMID 18398011. 
  7. "Fructose transport and metabolism in adipose tissue of Zucker rats: diminished GLUT5 activity during obesity and insulin resistance". Mol. Cell. Biochem. 261 (1–2): 23–33. June 2004. doi:10.1023/b:mcbi.0000028734.77867.d2. PMID 15362482. 
  8. "Age-associated changes in intestinal fructose uptake are not explained by alterations in the abundance of GLUT5 or GLUT2". J. Nutr. Biochem. 15 (10): 630–7. October 2004. doi:10.1016/j.jnutbio.2004.06.003. PMID 15542355. 
  9. Heinrich Kasper: Ernährungsmedizin und Diätetik. 11. Auflage, Elsevier, Urban&Fischer-Verlag, 2009, ISBN:9783437420122, S. 208
  10. "Organoids to Study Intestinal Nutrient Transport, Drug Uptake and Metabolism – Update to the Human Model and Expansion of Applications" (in en). Frontiers in Bioengineering and Biotechnology 8: 577656. 2020. doi:10.3389/fbioe.2020.577656. ISSN 2296-4185. PMID 33015026. 
  11. "Intestinal organoids for assessing nutrient transport, sensing and incretin secretion". Scientific Reports 5 (1): 16831. November 2015. doi:10.1038/srep16831. PMID 26582215. 

External links