Biology:List of single cell omics methods
From HandWiki
A list of more than 100 different single cell sequencing (omics) methods have been published.[1] The large majority of methods are paired with short-read sequencing technologies, although some of them are compatible with long read sequencing.
List
Method | Reference | Sequencing Mode | Early Estimate | Late Estimate |
---|---|---|---|---|
Tang method | [2] | Short Reads | 2008 | 2009 |
CyTOF | [3] | Short Reads | 2011 | 2012 |
STRT-seq / C1 | [4] | Short Reads | 2011 | 2012 |
SMART-seq | [5] | Short Reads | 2012 | 2013 |
CEL-seq | [6] | Short Reads | 2012 | 2013 |
Quartz-Seq | [7] | Short Reads | 2012 | 2013 |
PMA / SMA | [8] | Short Reads | 2012 | 2013 |
scBS-seq | [9] | Short Reads | 2013 | 2014 |
AbPair | [10] | Short Reads | 2014 | 2014 |
MARS-seq | [11] | Short Reads | 2014 | 2015 |
DR-seq | [12] | Short Reads | 2014 | 2015 |
G&T-Seq | [13] | Short Reads | 2014 | 2015 |
SCTG | [14] | Short Reads | 2014 | 2015 |
SIDR-seq | [15] | Short Reads | 2014 | 2015 |
sci-ATAC-seq | [16] | Short Reads | 2014 | 2015 |
Hi-SCL | [17] | Short Reads | 2015 | 2015 |
SUPeR-seq | [18] | Short Reads | 2015 | 2015 |
Drop-Chip | [19] | Short Reads | 2015 | 2015 |
CytoSeq | [20] | Short Reads | 2015 | 2016 |
inDrop | [21] | Short Reads | 2015 | 2016 |
sc-GEM | [22] | Short Reads | 2015 | 2016 |
scTrio-seq | [23] | Short Reads | 2015 | 2016 |
scM&T-seq | Short Reads | 2015 | 2016 | |
PLAYR | [24] | Short Reads | 2015 | 2016 |
Genshaft-et-al-2016 | [25] | Short Reads | 2015 | 2016 |
Darmanis-et-al-2016 | [26] | Short Reads | 2015 | 2016 |
CRISP-seq | [27] | Short Reads | 2015 | 2016 |
scGESTALT | [28] | Short Reads | 2015 | 2016 |
CEL-Seq2 / C1 | [29] | Short Reads | 2015 | 2016 |
STRT-seq-2i | [30] | Short Reads | 2016 | 2017 |
RNAseq @10xgenomics | [31] | Short Reads | 2016 | 2017 |
RNAseq / Gene Expression @nanostringtech | [32] | Short Reads | 2016 | 2017 |
sc Targeted Gene Expression @fluidigm | [33] | Short Reads | 2016 | 2017 |
scTCR Wafergen | [34] | Short Reads | 2016 | 2017 |
CROP-seq | [35] | Short Reads | 2016 | 2017 |
SiC-seq | [36] | Short Reads | 2016 | 2017 |
mcSCRB-seq | [37] | Short Reads | 2016 | 2017 |
Patch-seq | [38] | Short Reads | 2016 | 2017 |
Geo-seq | [39] | Short Reads | 2016 | 2017 |
scNOMe-seq | [40] | Short Reads | 2016 | 2017 |
scCOOL-seq | [41] | Short Reads | 2016 | 2017 |
CUT&Run | [42] | Short Reads | 2016 | 2017 |
MATQ-seq | [43] | Short Reads | 2016 | 2017 |
Quartz-Seq2 | [44] | Short Reads | 2017 | 2018 |
Seq-Well | [45] | Short Reads | 2017 | 2018 |
DroNC-Seq | [46] | Short Reads | 2017 | 2018 |
sci-RNA-seq | [47] | Short Reads | 2017 | 2018 |
scATAC @10xgenomics | [48] | Short Reads | 2017 | 2018 |
scVDJ @10xgenomics | [49] | Short Reads | 2017 | 2018 |
scNMT triple omics | [50] | Short Reads | 2017 | 2018 |
SPLIT-seq Parse Biosciences | [51] | Short Reads | 2017 | 2018 |
CITE-Seq | [52] | Short Reads | 2017 | 2018 |
scMNase-seq | [53] | Short Reads | 2017 | 2018 |
Chaligne-et-al-2018 | [54] | Short Reads | 2017 | 2018 |
LINNAEUS | [55] | Short Reads | 2017 | 2018 |
TracerSeq | [56] | Short Reads | 2017 | 2018 |
CellTag | [57] | Short Reads | 2017 | 2018 |
ScarTrace | [58] | Short Reads | 2017 | 2018 |
scRNA-Seq Dolomite Bio | [59] | Short Reads | 2017 | 2018 |
Trac-looping | [60] | Short Reads | 2017 | 2018 |
Perturb-ATAC | [61] | Short Reads | 2018 | 2019 |
scMethylation | [62] | Short Reads | 2018 | 2019 |
scHiC | [63] | Short Reads | 2018 | 2019 |
Multiplex Droplet scRNAseq | [64] | Short Reads | 2018 | 2019 |
sci-CAR | [65] | Short Reads | 2018 | 2019 |
C1 CAGE single cell | [66] | Short Reads | 2018 | 2019 |
sc paired microRNA-mRNA | [67] | Short Reads | 2018 | 2019 |
scCAT-seq | [68] | Short Reads | 2018 | 2019 |
REAP-seq @fluidigm | [69] | Short Reads | 2018 | 2019 |
scCC | [70] | Short Reads | 2018 | 2019 |
yscRNA-SEQ | [71] | Short Reads | 2018 | 2019 |
TARGET-seq | [72] | Short Reads | 2018 | 2019 |
MULTI-seq | [73] | Short Reads | 2018 | 2019 |
snRNA-seq | [74] | Short Reads | 2018 | 2019 |
sci-RNA-seq3 | [75] | Short Reads | 2018 | 2019 |
BRIF-seq | [76] | Short Reads | 2018 | 2019 |
Drop-seq Dolomite Bio | [59] | Short Reads | 2018 | 2019 |
Slide-seq | [77] | Short Reads | 2018 | 2019 |
CUT&Tag | [78] | Short Reads | 2018 | 2019 |
CellTagging | [79] | Short Reads | 2018 | 2019 |
DART-Seq | [80] | Short Reads | 2018 | 2019 |
scDamID&T | [81] | Short Reads | 2018 | 2019 |
ACT-seq | [82] | Short Reads | 2018 | 2019 |
Sci-Hi-C | [83] | Short Reads | 2018 | 2019 |
Slide-seq | [84] | Short Reads | 2018 | 2019 |
Simplified-Drop-seq | [85] | Short Reads | 2018 | 2019 |
scChIC-seq | [86] | Short Reads | 2018 | 2019 |
Dip-C | [87] | Short Reads | 2018 | 2019 |
CoBATCH | [88] | Short Reads | 2018 | 2019 |
Convert-seq | [89] | Short Reads | 2018 | 2019 |
Droplet-based scATAC-seq | [90] | Short Reads | 2018 | 2019 |
ECCITE-seq | [91] | Short Reads | 2018 | 2019 |
dsciATAC-seq | [90] | Short Reads | 2018 | 2019 |
CLEVER-seq | [92] | Short Reads | 2018 | 2019 |
scISOr-Seq | [93] | Short Reads | 2018 | 2019 |
MARS-seq2.0 | [94] | Short Reads | 2018 | 2019 |
nano-NOMe | [95] | Long Reads | 2018 | 2019 |
MeSMLR-seq | [96] | Long Reads | 2018 | 2019 |
SMAC-seq | [97] | Long Reads | 2018 | 2019 |
MoonTag/SunTag | [98] | Short Reads | 2018 | 2019 |
SCoPE2 | [99] | Short Reads | 2018 | 2019 |
sci-fate | [100] | Short Reads | 2018 | 2019 |
µDamID | [101] | Short Reads | 2018 | 2019 |
Methyl-HiC | [102] | Short Reads | 2018 | 2019 |
RAGE-seq | [103] | Long Reads | 2018 | 2019 |
Paired-Seq | [104] | Short Reads | 2018 | 2019 |
Tn5Prime | [105] | Short Reads | 2018 | 2019 |
NanoPARE | [106] | Short Reads | 2018 | 2019 |
BART-Seq | [107] | Short Reads | 2018 | 2019 |
scDam&T-seq | [108] | Short Reads | 2018 | 2019 |
itChIP-seq | [109] | Short Reads | 2018 | 2019 |
SNARE-seq | [110] | Short Reads | 2018 | 2019 |
ASTAR-seq | [111] | Short Reads | 2018 | 2019 |
sci-Plex | [112] | Short Reads | 2018 | 2019 |
MIX-Seq | [113] | Short Reads | 2018 | 2019 |
microSPLiT | [114] | Short Reads | 2018 | 2019 |
PAIso-seq | [115] | Short Reads | 2018 | 2019 |
FIN-Seq | [116] | Short Reads | 2018 | 2019 |
LIBRA-seq | [117] | Short Reads | 2018 | 2019 |
scifi-RNA-seq | [118] | Short Reads | 2018 | 2019 |
plexDIA | [119] | Short Reads | 2021 | 2021 |
MPX | [120] | Short Reads | 2023 | 2023 |
References
- ↑ "Single-Cell-Omics.v2.3.13 @albertvilella" (in en-US). https://docs.google.com/spreadsheets/d/1IPe2ozb1Mny8sLvJaSE57RJr3oruiBoSudAVhSH-O8M/edit?usp=embed_facebook.
- ↑ "mRNA-Seq whole-transcriptome analysis of a single cell". Nature Methods 6 (5): 377–82. May 2009. doi:10.1038/nmeth.1315. PMID 19349980.
- ↑ "Fluidigm | Single-Cell Advances". https://www.fluidigm.com/applications/single-cell-advances.
- ↑ "CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification". Cell Reports 2 (3): 666–73. September 2012. doi:10.1016/j.celrep.2012.08.003. PMID 22939981.
- ↑ "Quantitative single-cell RNA-seq with unique molecular identifiers". Nature Methods 11 (2): 163–6. February 2014. doi:10.1038/nmeth.2772. PMID 24363023.
- ↑ "Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types". Science 343 (6172): 776–9. February 2014. doi:10.1126/science.1247651. PMID 24531970. Bibcode: 2014Sci...343..776J.
- ↑ "Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity". Genome Biology 14 (4): R31. April 2013. doi:10.1186/gb-2013-14-4-r31. PMID 23594475.
- ↑ "Two methods for full-length RNA sequencing for low quantities of cells and single cells". Proceedings of the National Academy of Sciences of the United States of America 110 (2): 594–9. January 2013. doi:10.1073/pnas.1217322109. PMID 23267071. Bibcode: 2013PNAS..110..594P.
- ↑ "Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity". Nature Methods 11 (8): 817–820. August 2014. doi:10.1038/nmeth.3035. PMID 25042786.
- ↑ Briggs, Adrian W.; Goldfless, Stephen J.; Timberlake, Sonia; Belmont, Brian J.; Clouser, Christopher R.; Koppstein, David et al. (May 5, 2017). "Tumor-infiltrating immune repertoires captured by single-cell barcoding in emulsion". bioRxiv: 134841. doi:10.1101/134841. https://www.biorxiv.org/content/10.1101/134841v1.
- ↑ "Smart-seq2 for sensitive full-length transcriptome profiling in single cells". Nature Methods 10 (11): 1096–8. November 2013. doi:10.1038/nmeth.2639. PMID 24056875.
- ↑ "Integrated genome and transcriptome sequencing of the same cell". Nature Biotechnology 33 (3): 285–289. March 2015. doi:10.1038/nbt.3129. PMID 25599178.
- ↑ "G&T-seq: parallel sequencing of single-cell genomes and transcriptomes". Nature Methods 12 (6): 519–22. June 2015. doi:10.1038/nmeth.3370. PMID 25915121. https://zenodo.org/record/895966.
- ↑ "Single-cell transcriptogenomics reveals transcriptional exclusion of ENU-mutated alleles". Mutation Research 772: 55–62. February 2015. doi:10.1016/j.mrfmmm.2015.01.002. PMID 25733965.
- ↑ "SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells". Genome Research 28 (1): 75–87. January 2018. doi:10.1101/gr.223263.117. PMID 29208629.
- ↑ "Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing". Science 348 (6237): 910–4. May 2015. doi:10.1126/science.aab1601. PMID 25953818. Bibcode: 2015Sci...348..910C.
- ↑ "High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics". PLOS ONE 10 (5): e0116328. January 1, 2015. doi:10.1371/journal.pone.0116328. PMID 26000628. Bibcode: 2015PLoSO..1016328R.
- ↑ "Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos". Genome Biology 16 (1): 148. July 2015. doi:10.1186/s13059-015-0706-1. PMID 26201400.
- ↑ "Drop-Chip". https://pubs.broadinstitute.org/drop-chip/index.php.
- ↑ "Expression profiling. Combinatorial labeling of single cells for gene expression cytometry". Science 347 (6222): 1258367. February 2015. doi:10.1126/science.1258367. PMID 25657253.
- ↑ "Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells". Cell 161 (5): 1187–1201. May 2015. doi:10.1016/j.cell.2015.04.044. PMID 26000487.
- ↑ "Single-cell multimodal profiling reveals cellular epigenetic heterogeneity". Nature Methods 13 (10): 833–6. October 2016. doi:10.1038/nmeth.3961. PMID 27525975.
- ↑ "Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas". Cell Research 26 (3): 304–19. March 2016. doi:10.1038/cr.2016.23. PMID 26902283.
- ↑ "Highly multiplexed simultaneous detection of RNAs and proteins in single cells". Nature Methods 13 (3): 269–75. March 2016. doi:10.1038/nmeth.3742. PMID 26808670.
- ↑ "Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction". Genome Biology 17 (1): 188. September 2016. doi:10.1186/s13059-016-1045-6. PMID 27640647.
- ↑ "Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma". Cell Reports 21 (5): 1399–1410. October 2017. doi:10.1016/j.celrep.2017.10.030. PMID 29091775.
- ↑ "Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq". Cell 167 (7): 1883–1896.e15. December 2016. doi:10.1016/j.cell.2016.11.039. PMID 27984734.
- ↑ "Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain". Nature Biotechnology 36 (5): 442–450. June 2018. doi:10.1038/nbt.4103. PMID 29608178.
- ↑ "CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq". Genome Biology 17 (1): 77. April 2016. doi:10.1186/s13059-016-0938-8. PMID 27121950.
- ↑ "STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array". Scientific Reports 7 (1): 16327. November 2017. doi:10.1038/s41598-017-16546-4. PMID 29180631. Bibcode: 2017NatSR...716327H.
- ↑ "Single Cell RNA-Seq". 10x Genomic. https://www.10xgenomics.com/single-cell-technology/.
- ↑ "nCounter® Technology". NanoString Technologies. https://www.nanostring.com/scientific-content/technology-overview/ncounter-technology.
- ↑ "Fluidigm | Consumables | Single-Cell Targeted Gene Expression". https://www.fluidigm.com/reagents/single-cell-targeted-gene-expression.
- ↑ Inc, WaferGen Bio-systems. "WaferGen Presents Single-Cell T-Cell Receptor Sequencing Results Using the ICELL8™ Single-Cell System at the 2016 Single Cell Genomics Meeting". https://www.prnewswire.com/news-releases/wafergen-presents-single-cell-t-cell-receptor-sequencing-results-using-the-icell8-single-cell-system-at-the-2016-single-cell-genomics-meeting-300327741.html.
- ↑ "Pooled CRISPR screening with single-cell transcriptome readout". Nature Methods 14 (3): 297–301. March 2017. doi:10.1038/nmeth.4177. PMID 28099430.
- ↑ "Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding". Nature Biotechnology 35 (7): 640–646. July 2017. doi:10.1038/nbt.3880. PMID 28553940.
- ↑ Bagnoli, Johannes W.; Ziegenhain, Christoph; Janjic, Aleksandar; Wange, Lucas E.; Vieth, Beate; Parekh, Swati et al. (October 18, 2017). "mcSCRB-seq: sensitive and powerful single-cell RNA sequencing". bioRxiv: 188367. doi:10.1101/188367. https://www.biorxiv.org/content/10.1101/188367v1.
- ↑ "Q&A: using Patch-seq to profile single cells". BMC Biology 15 (1): 58. July 2017. doi:10.1186/s12915-017-0396-0. PMID 28679385.
- ↑ "Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq". Nature Protocols 12 (3): 566–580. March 2017. doi:10.1038/nprot.2017.003. PMID 28207000.
- ↑ Ren, Bing, ed (June 2017). "Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells". eLife 6: e23203. doi:10.7554/eLife.23203. PMID 28653622.
- ↑ "Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells". Cell Research 27 (8): 967–988. August 2017. doi:10.1038/cr.2017.82. PMID 28621329.
- ↑ Reinberg, Danny, ed (January 2017). "An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites". eLife 6: e21856. doi:10.7554/eLife.21856. PMID 28079019.
- ↑ "Effective detection of variation in single-cell transcriptomes using MATQ-seq". Nature Methods 14 (3): 267–270. March 2017. doi:10.1038/nmeth.4145. PMID 28092691.
- ↑ "Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads". Genome Biology 19 (1): 29. March 2018. doi:10.1186/s13059-018-1407-3. PMID 29523163.
- ↑ "Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput". Nature Methods 14 (4): 395–398. April 2017. doi:10.1038/nmeth.4179. PMID 28192419.
- ↑ "Massively parallel single-nucleus RNA-seq with DroNc-seq". Nature Methods 14 (10): 955–958. October 2017. doi:10.1038/nmeth.4407. PMID 28846088.
- ↑ "Comprehensive single-cell transcriptional profiling of a multicellular organism". Science 357 (6352): 661–667. August 2017. doi:10.1126/science.aam8940. PMID 28818938. Bibcode: 2017Sci...357..661C.
- ↑ "Single Cell ATAC - 10x Genomics". https://www.10xgenomics.com/solutions/single-cell-atac/.
- ↑ "Single Cell Immune Profiling - 10x Genomics". https://www.10xgenomics.com/solutions/vdj/.
- ↑ Argelaguet, Ricard; Mohammed, Hisham; Clark, Stephen J.; Stapel, L. Carine; Krueger, Christel; Kapourani, Chantriolnt-Andreas et al. (January 13, 2019). "Single cell multi-omics profiling reveals a hierarchical epigenetic landscape during mammalian germ layer specification". bioRxiv: 519207. doi:10.1101/519207. https://www.biorxiv.org/content/10.1101/519207v1.
- ↑ "Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding". Science 360 (6385): 176–182. April 2018. doi:10.1126/science.aam8999. PMID 29545511. Bibcode: 2018Sci...360..176R.
- ↑ "Simultaneous epitope and transcriptome measurement in single cells". Nature Methods 14 (9): 865–868. September 2017. doi:10.1038/nmeth.4380. PMID 28759029.
- ↑ "Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing". Nature 562 (7726): 281–285. October 2018. doi:10.1038/s41586-018-0567-3. PMID 30258225. Bibcode: 2018Natur.562..281L.
- ↑ Nam, Anna S.; Kim, Kyu-Tae; Chaligne, Ronan; Izzo, Franco; Ang, Chelston; Abu-Zeinah, Ghaith et al. (October 16, 2018). "High throughput droplet single-cell Genotyping of Transcriptomes (GoT) reveals the cell identity dependency of the impact of somatic mutations". bioRxiv: 444687. doi:10.1101/444687. https://www.biorxiv.org/content/10.1101/444687v1.
- ↑ "Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars". Nature Biotechnology 36 (5): 469–473. June 2018. doi:10.1038/nbt.4124. PMID 29644996.
- ↑ "Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo". Science 360 (6392): 981–987. June 2018. doi:10.1126/science.aar4362. PMID 29700229. Bibcode: 2018Sci...360..981W.
- ↑ "CellTag Indexing: genetic barcode-based sample multiplexing for single-cell genomics". Genome Biology 20 (1): 90. May 2019. doi:10.1186/s13059-019-1699-y. PMID 31072405.
- ↑ "Whole-organism clone tracing using single-cell sequencing". Nature 556 (7699): 108–112. April 2018. doi:10.1038/nature25969. PMID 29590089. Bibcode: 2018Natur.556..108A.
- ↑ 59.0 59.1 "Nadia Instrument". https://www.dolomite-bio.com/product/nadia-instrument/.
- ↑ "Trac-looping measures genome structure and chromatin accessibility". Nature Methods 15 (9): 741–747. September 2018. doi:10.1038/s41592-018-0107-y. PMID 30150754.
- ↑ "Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks". Cell 176 (1–2): 361–376.e17. January 2019. doi:10.1016/j.cell.2018.11.022. PMID 30580963.
- ↑ "Single-Cell DNA Methylation Profiling: Technologies and Biological Applications". Trends in Biotechnology 36 (9): 952–965. September 2018. doi:10.1016/j.tibtech.2018.04.002. PMID 29724495.
- ↑ "Capturing heterogeneity: single-cell structures of the 3D genome". Nature Structural & Molecular Biology 24 (5): 437–438. May 2017. doi:10.1038/nsmb.3404. PMID 28471429.
- ↑ "Multiplexed droplet single-cell RNA-sequencing using natural genetic variation". Nature Biotechnology 36 (1): 89–94. January 2018. doi:10.1038/nbt.4042. PMID 29227470.
- ↑ "Joint profiling of chromatin accessibility and gene expression in thousands of single cells". Science 361 (6409): 1380–1385. September 2018. doi:10.1126/science.aau0730. PMID 30166440. Bibcode: 2018Sci...361.1380C.
- ↑ "C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution". Nature Communications 10 (1): 360. January 2019. doi:10.1038/s41467-018-08126-5. PMID 30664627. Bibcode: 2019NatCo..10..360K.
- ↑ "Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation". Nature Communications 10 (1): 95. January 2019. doi:10.1038/s41467-018-07981-6. PMID 30626865. Bibcode: 2019NatCo..10...95W.
- ↑ "Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity". Nature Communications 10 (1): 470. January 2019. doi:10.1038/s41467-018-08205-7. PMID 30692544. Bibcode: 2019NatCo..10..470L.
- ↑ Corporation, Fluidigm (January 31, 2019). "Fluidigm Introduces REAP-Seq for Multi-Omic Single-Cell Analysis on the C1". GlobeNewswire News Room (Press release).
- ↑ Moudgil, Arnav; Wilkinson, Michael N.; Chen, Xuhua; He, June; Cammack, Alex J.; Vasek, Michael J. et al. (February 1, 2019). "Self-reporting transposons enable simultaneous readout of gene expression and transcription factor binding in single cells". bioRxiv 182 (4): 992–1008.e21. doi:10.1101/538553. PMID 32710817. PMC 7510185. https://www.biorxiv.org/content/10.1101/538553v1.
- ↑ "Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations". Nature Microbiology 4 (4): 683–692. April 2019. doi:10.1038/s41564-018-0346-9. PMID 30718850.
- ↑ "Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing". Molecular Cell 73 (6): 1292–1305.e8. March 2019. doi:10.1016/j.molcel.2019.01.009. PMID 30765193.
- ↑ "MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices". Nature Methods 16 (7): 619–626. July 2019. doi:10.1038/s41592-019-0433-8. PMID 31209384.
- ↑ "Nuclei multiplexing with barcoded antibodies for single-nucleus genomics". Nature Communications 10 (1): 2907. July 2019. doi:10.1038/s41467-019-10756-2. PMID 31266958. Bibcode: 2019NatCo..10.2907G.
- ↑ "Mouse RNA Atlas". https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/sciRnaSeq3.
- ↑ "BRIF-Seq: Bisulfite-Converted Randomly Integrated Fragments Sequencing at the Single-Cell Level". Molecular Plant 12 (3): 438–446. March 2019. doi:10.1016/j.molp.2019.01.004. PMID 30639749.
- ↑ "Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution". Science 363 (6434): 1463–1467. March 2019. doi:10.1126/science.aaw1219. PMID 30923225. Bibcode: 2019Sci...363.1463R.
- ↑ "CUT&Tag for efficient epigenomic profiling of small samples and single cells". Nature Communications 10 (1): 1930. April 2019. doi:10.1038/s41467-019-09982-5. PMID 31036827. Bibcode: 2019NatCo..10.1930K.
- ↑ Biddy, Brent A. (March 7, 2019). Single-cell mapping of lineage and identity via CellTagging. doi:10.17504/protocols.io.yxifxke. https://www.protocols.io/view/single-cell-mapping-of-lineage-and-identity-via-ce-yxifxke.
- ↑ "Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells". Nature Methods 16 (1): 59–62. January 2019. doi:10.1038/s41592-018-0259-9. PMID 30559431.
- ↑ "Simultaneous quantification of protein-DNA contacts and transcriptomes in single cells". Nature Biotechnology 37 (7): 766–772. July 2019. doi:10.1038/s41587-019-0150-y. PMID 31209373.
- ↑ "Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq)". Nature Communications 10 (1): 3747. August 2019. doi:10.1038/s41467-019-11559-1. PMID 31431618. Bibcode: 2019NatCo..10.3747C.
- ↑ "Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells". Methods 170: 61–68. September 2019. doi:10.1016/j.ymeth.2019.09.012. PMID 31536770.
- ↑ "Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution". Science 363 (6434): 1463–1467. March 2019. doi:10.1126/science.aaw1219. PMID 30923225. Bibcode: 2019Sci...363.1463R.
- ↑ "Simplified Drop-seq workflow with minimized bead loss using a bead capture and processing microfluidic chip". Lab on a Chip 19 (9): 1610–1620. April 2019. doi:10.1039/C9LC00014C. PMID 30920557.
- ↑ "Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification". Nature Methods 16 (4): 323–325. April 2019. doi:10.1038/s41592-019-0361-7. PMID 30923384.
- ↑ "Three-dimensional genome structures of single sensory neurons in mouse visual and olfactory systems". Nature Structural & Molecular Biology 26 (4): 297–307. April 2019. doi:10.1038/s41594-019-0205-2. PMID 30936528.
- ↑ "CoBATCH for High-Throughput Single-Cell Epigenomic Profiling". Molecular Cell 76 (1): 206–216.e7. October 2019. doi:10.1016/j.molcel.2019.07.015. PMID 31471188.
- ↑ Luginbühl, Joachim; Kouno, Tsukasa; Nakano, Rei; Chater, Thomas E.; Sivaraman, Divya M.; Kishima, Mami et al. (April 5, 2019). "Decoding neuronal diversity by single-cell Convert-seq". bioRxiv: 600239. doi:10.1101/600239. https://www.biorxiv.org/content/10.1101/600239v1.
- ↑ 90.0 90.1 "Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility". Nature Biotechnology 37 (8): 916–924. August 2019. doi:10.1038/s41587-019-0147-6. PMID 31235917.
- ↑ "Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells". Nature Methods 16 (5): 409–412. May 2019. doi:10.1038/s41592-019-0392-0. PMID 31011186.
- ↑ "Single-Cell 5fC Sequencing". Single Cell Methods. Methods in Molecular Biology. 1979. Clifton, N.J.. January 1, 2019. pp. 251–267. doi:10.1007/978-1-4939-9240-9_16. ISBN 978-1-4939-9239-3.
- ↑ "Single-Cell Virus Sequencing of Influenza Infections That Trigger Innate Immunity". Journal of Virology 93 (14). July 2019. doi:10.1128/JVI.00500-19. PMID 31068418.
- ↑ "MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing". Nature Protocols 14 (6): 1841–1862. June 2019. doi:10.1038/s41596-019-0164-4. PMID 31101904.
- ↑ Lee, Isac; Razaghi, Roham; Gilpatrick, Timothy; Molnar, Michael; Sadowski, Norah; Simpson, Jared T. et al. (February 2, 2019). "Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing". bioRxiv: 504993. doi:10.1101/504993. https://www.biorxiv.org/content/10.1101/504993v2.
- ↑ "Single-molecule long-read sequencing reveals the chromatin basis of gene expression". Genome Research 29 (8): 1329–1342. August 2019. doi:10.1101/gr.251116.119. PMID 31201211.
- ↑ Shipony, Zohar; Marinov, Georgi K.; Swaffer, Matthew P.; Sinott-Armstrong, Nasa A.; Skotheim, Jan M.; Kundaje, Anshul et al. (December 22, 2018). "Long-range single-molecule mapping of chromatin accessibility in eukaryotes". bioRxiv 17 (3): 319–327. doi:10.1101/504662. PMID 32042188.
- ↑ "Multi-Color Single-Molecule Imaging Uncovers Extensive Heterogeneity in mRNA Decoding". Cell 178 (2): 458–472.e19. July 2019. doi:10.1016/j.cell.2019.05.001. PMID 31178119.
- ↑ Specht, Harrison; Emmott, Edward; Koller, Toni; Slavov, Nikolai (June 9, 2019). "High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity". bioRxiv: 665307. doi:10.1101/665307. https://www.biorxiv.org/content/10.1101/665307v1.
- ↑ Cao, Junyue; Zhou, Wei; Steemers, Frank; Trapnell, Cole; Shendure, Jay (June 11, 2019). "Characterizing the temporal dynamics of gene expression in single cells with sci-fate". bioRxiv: 666081. doi:10.1101/666081. https://www.biorxiv.org/content/10.1101/666081v1.
- ↑ Altemose, Nicolas; Maslan, Annie; Lai, Andre; White, Jonathan A.; Streets, Aaron M. (July 18, 2019). "μDamID: a microfluidic approach for imaging and sequencing protein-DNA interactions in single cells". bioRxiv: 706903. doi:10.1101/706903. https://www.biorxiv.org/content/10.1101/706903v1.
- ↑ "Joint profiling of DNA methylation and chromatin architecture in single cells". Nature Methods 16 (10): 991–993. October 2019. doi:10.1038/s41592-019-0502-z. PMID 31384045.
- ↑ "High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes". Nature Communications 10 (1): 3120. July 2019. doi:10.1038/s41467-019-11049-4. PMID 31311926. Bibcode: 2019NatCo..10.3120S.
- ↑ "An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome". Nature Structural & Molecular Biology 26 (11): 1063–1070. November 2019. doi:10.1038/s41594-019-0323-x. PMID 31695190.
- ↑ "Tn5Prime, a Tn5 based 5' capture method for single cell RNA-seq". Nucleic Acids Research 46 (10): e62. June 2018. doi:10.1093/nar/gky182. PMID 29548006.
- ↑ "NanoPARE: parallel analysis of RNA 5' ends from low-input RNA". Genome Research 28 (12): 1931–1942. December 2018. doi:10.1101/gr.239202.118. PMID 30355603.
- ↑ "BART-Seq: cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis". Genome Biology 20 (1): 155. August 2019. doi:10.1186/s13059-019-1748-6. PMID 31387612.
- ↑ "Simultaneous quantification of protein-DNA contacts and transcriptomes in single cells". Nature Biotechnology 37 (7): 766–772. July 2019. doi:10.1038/s41587-019-0150-y. PMID 31209373.
- ↑ "Profiling chromatin states using single-cell itChIP-seq". Nature Cell Biology 21 (9): 1164–1172. September 2019. doi:10.1038/s41556-019-0383-5. PMID 31481796.
- ↑ "High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell". Nature Biotechnology 37 (12): 1452–1457. December 2019. doi:10.1038/s41587-019-0290-0. PMID 31611697.
- ↑ Xing, Qiao Rui; Farran, Chadi EL; Yi, Yao; Warrier, Tushar; Gautam, Pradeep; Collins, James J. et al. (November 4, 2019). "Parallel Bimodal Single-cell Sequencing of Transcriptome and Chromatin Accessibility". bioRxiv 30 (7): 1027–1039. doi:10.1101/829960. PMID 32699019.
- ↑ "Massively multiplex chemical transcriptomics at single cell resolution". Science 367 (6473): 45–51. December 2019. doi:10.1126/science.aax6234. PMID 31806696.
- ↑ McFarland, James M.; Paolella, Brenton R.; Warren, Allison; Geiger-Schuller, Kathryn; Shibue, Tsukasa; Rothberg, Michael et al. (December 8, 2019). "Multiplexed single-cell profiling of post-perturbation transcriptional responses to define cancer vulnerabilities and therapeutic mechanism of action". bioRxiv: 868752. doi:10.1101/868752. https://www.biorxiv.org/content/10.1101/868752v1.
- ↑ Kuchina, Anna; Brettner, Leandra M.; Paleologu, Luana; Roco, Charles M.; Rosenberg, Alexander B.; Carignano, Alberto et al. (December 11, 2019). "Microbial single-cell RNA sequencing by split-pool barcoding". bioRxiv: 869248. doi:10.1101/869248. https://www.biorxiv.org/content/10.1101/869248v2.
- ↑ "Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails". Nature Communications 10 (1): 5292. November 2019. doi:10.1038/s41467-019-13228-9. PMID 31757970. Bibcode: 2019NatCo..10.5292L.
- ↑ "FIN-Seq: transcriptional profiling of specific cell types from frozen archived tissue of the human central nervous system". Nucleic Acids Research 48 (1): e4. November 2019. doi:10.1093/nar/gkz968. PMID 31728515.
- ↑ "High-Throughput Mapping of B Cell Receptor Sequences to Antigen Specificity". Cell 179 (7): 1636–1646.e15. December 2019. doi:10.1016/j.cell.2019.11.003. PMID 31787378.
- ↑ Datlinger, Paul; Rendeiro, André F.; Boenke, Thorina; Krausgruber, Thomas; Barreca, Daniele; Bock, Christoph (December 18, 2019). "Ultra-high throughput single-cell RNA sequencing by combinatorial fluidic indexing". bioRxiv: 2019.12.17.879304. doi:10.1101/2019.12.17.879304. https://www.biorxiv.org/content/10.1101/2019.12.17.879304v1.
- ↑ Derks, Jason; Leduc, Andrew; Wallmann, Georg; Huffman, R. Gray; Willetts, Matthew; Khan, Saad; Specht, Harrison; Ralser, Markus et al. (2022-07-14). "Increasing the throughput of sensitive proteomics by plexDIA" (in en). Nature Biotechnology 41 (1): 50–59. doi:10.1038/s41587-022-01389-w. ISSN 1546-1696. PMID 35835881.
- ↑ Karlsson, Filip; Kallas, Tomasz; Thiagarajan, Divya; Karlsson, Max; Schweitzer, Maud; Fernandez Navarro, Jose; Leijonancker, Louise; Geny, Sylvain et al. (2023-06-08). "Molecular Pixelation: Single cell spatial proteomics by sequencing" (in en). bioRxiv. doi:10.1101/2023.06.05.543770.
Original source: https://en.wikipedia.org/wiki/List of single cell omics methods.
Read more |