Biology:SLC2A9
Generic protein structure example |
Solute carrier family 2, facilitated glucose transporter member 9 is a protein that in humans is encoded by the SLC2A9 gene.[1][2][3]
This gene encodes a member of the SLC2A facilitative glucose transporter family. Members of this family play a significant role in maintaining glucose homeostasis. The encoded protein may play a role in the development and survival of chondrocytes in cartilage matrices. Two transcript variants encoding distinct isoforms have been identified for this gene.[3]
SLC2A9 has also recently been found to transport uric acid, and genetic variants of the transporter have been linked to increased risk of development of both hyperuricemia, gout and Alzheimer's disease.[4][5][6]
See also
References
- ↑ "Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9)". Genomics 66 (2): 217–20. Aug 2000. doi:10.1006/geno.2000.6195. PMID 10860667.
- ↑ "A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity". Mol Membr Biol 24 (5–6): 455–63. Aug 2007. doi:10.1080/09687680701298143. PMID 17710649.
- ↑ 3.0 3.1 "SLC2A9 solute carrier family 2 member 9 [ Homo sapiens (human) "]. https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=56606.
- ↑ "SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout". Nature Genetics 40 (4): 437–42. 2008. doi:10.1038/ng.106. PMID 18327257.
- ↑ "SLC2A9 influences uric acid concentrations with pronounced sex-specific effects". Nature Genetics 40 (4): 430–6. 2008. doi:10.1038/ng.107. PMID 18327256.
- ↑ "Genome-wide association study of Alzheimer's disease with psychotic symptoms". Molecular Psychiatry 17 (12): 1316–1327. 2012. doi:10.1038/mp.2011.125. PMID 22005930.
Further reading
- "Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes.". Biochem. J.. 350 Pt 3 (3): 771–6. 2001. doi:10.1042/0264-6021:3500771. PMID 10970791.
- "Cytokine regulation of facilitated glucose transport in human articular chondrocytes.". J. Immunol. 167 (12): 7001–8. 2001. doi:10.4049/jimmunol.167.12.7001. PMID 11739520.
- "Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9.". Cell Biol. Int. 26 (3): 297–300. 2002. doi:10.1006/cbir.2001.0850. PMID 11991658.
- "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. 2003. doi:10.1073/pnas.242603899. PMID 12477932. Bibcode: 2002PNAS...9916899M.
- "Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2-deoxyglucose uptake by IGF-I and elevated MMP-2 secretion by glucose deprivation.". Osteoarthr. Cartil. 11 (2): 92–101. 2003. doi:10.1053/joca.2002.0858. PMID 12554125.
- "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. 2004. doi:10.1038/ng1285. PMID 14702039.
- "Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking.". J. Biol. Chem. 279 (16): 16229–36. 2004. doi:10.1074/jbc.M312226200. PMID 14739288.
- "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. 2004. doi:10.1101/gr.2596504. PMID 15489334.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
Original source: https://en.wikipedia.org/wiki/SLC2A9.
Read more |