Biology:Thinopyrum ponticum

From HandWiki
Short description: Species of grass

Thinopyrum ponticum
2015.08.22 10.00.57 IMG 0236 - Flickr - andrey zharkikh.jpg
Scientific classification edit
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Pooideae
Genus: Thinopyrum
Species:
T. ponticum
Binomial name
Thinopyrum ponticum
(Podp.) Z.-W.Liu & R.-C.Wang
SynonymsUSDA—NRCS[1]
  • Agropyron elongatum (Host) P. Beauv.
  • Agropyron varnense (Velen.) Hayek
  • Elymus elongatus (Host) Runemark
  • Elymus varnensis (Velen.) Runemark
  • Elytrigia elongata (Host) Nevski
  • Elytrigia pontica (Podp.) Holub
  • Lophopyrum elongatum (Host) Á. Löve

Thinopyrum ponticum is a species of grass known by the common names tall wheatgrass,[1] rush wheatgrass, and Eurasian quackgrass. It is native to Eurasia and it has been introduced to many other parts of the world, including much of the Americas and Australia.[2]

This perennial bunchgrass can grow up to 2 meters tall. The ribbed leaves have pale green blades a few millimeters wide. The inflorescence is a spike studded with spikelets up to 3 centimeters long, each containing up to 12 flowers.[3]

This grass is used as a forage and for hay in many places.[4] It is good for land with saline soils, and it can help reduce the salinity. It is also good for non-saline soils.[5] This grass is commonly crossed with its relative, wheat, in order to give the wheat traits such as stress tolerance and pest resistance.[6][7]

Head Blight Resistance

Thinopyrum ponticum is resistant to Fusarium head blight, which is caused by Fusarium graminearum. This is due, in part, to the Fhb7 gene. The protein product of the Fhb7 gene detoxifies trichothecenes produced by the fungus, which harm both the plant and any mammals that consume them. Evidence suggests that the Fhb7 gene was acquired from an Epichloë fungus by horizontal gene transfer.[8] The Fhb7 gene has been introgressed into wheat.

References

  1. 1.0 1.1 "Thinopyrum ponticum". Natural Resources Conservation Service PLANTS Database. USDA. https://plants.usda.gov/core/profile?symbol=THPO7. Retrieved 9 December 2015. 
  2. {{citation | mode = cs1 | title = Thinopyrum ponticum | work = Germplasm Resources Information Network (GRIN) | url = | publisher = [[Organization:Agricultural Research ServAgricultural Research Service (ARS), United States Department of Agriculture (USDA) | access-date = 25 January 2018 }}
  3. Thinopyrum ponticum. Grass Manual Treatment.
  4. Thinopyrum ponticum. USDA NRCS Plant Guide.
  5. Tall wheat grass. Western Australia Department of Agriculture and Food.
  6. Oliver RE, Xu SS, Stack RW, Friesen TL, Jin Y, Cai X. (2006). "Molecular cytogenetic characterization of four partial wheat–Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch". Theor Appl Genet 112 (8): 1473–9. doi:10.1007/s00122-006-0250-1. PMID 16544125. http://www.ars.usda.gov/SP2UserFiles/ad_hoc/36400500Publications/YJ/ss_line_cytogenetic.pdf. 
  7. Chen G, Zheng Q, Bao Y, Liu S, Wang H, Li X. (2012). "Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin". J Biosci 37 (1): 149–55. doi:10.1007/s12038-011-9175-1. PMID 22357212. https://www.ias.ac.in/article/fulltext/jbsc/037/01/0149-0155. 
  8. Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, Xiao G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu SS, Bai G, Nevo E, Gao C, Ohm H, Kong L. (2020). "Horizontal Gene Transfer of Fhb7 From Fungus Underlies Fusarium Head Blight Resistance in Wheat". Science 368 (6493): eaba5435. doi:10.1126/science.aba5435. PMID 32273397. https://science.sciencemag.org/content/368/6493/eaba5435. 


Wikidata ☰ Q7784631 entry