Bismut connection
In mathematics, the Bismut connection [math]\displaystyle{ \nabla }[/math] is the unique connection on a complex Hermitian manifold that satisfies the following conditions,
- It preserves the metric [math]\displaystyle{ \nabla g =0 }[/math]
- It preserves the complex structure [math]\displaystyle{ \nabla J=0 }[/math]
- The torsion [math]\displaystyle{ T(X,Y) }[/math] contracted with the metric, i.e. [math]\displaystyle{ T(X,Y,Z)=g(T(X,Y),Z) }[/math], is totally skew-symmetric.
Bismut has used this connection when proving a local index formula for the Dolbeault operator on non-Kähler manifolds. Bismut connection has applications in type II and heterotic string theory.
The explicit construction goes as follows. Let [math]\displaystyle{ \langle-,-\rangle }[/math] denote the pairing of two vectors using the metric that is Hermitian w.r.t the complex structure, i.e. [math]\displaystyle{ \langle X,JY\rangle=-\langle JX,Y\rangle }[/math]. Further let [math]\displaystyle{ \nabla }[/math] be the Levi-Civita connection. Define first a tensor [math]\displaystyle{ T }[/math] such that [math]\displaystyle{ T(Z,X,Y)=-\frac12\langle Z,J(\nabla_{X}J)Y\rangle }[/math]. This tensor is anti-symmetric in the first and last entry, i.e. the new connection [math]\displaystyle{ \nabla+T }[/math] still preserves the metric. In concrete terms, the new connection is given by [math]\displaystyle{ \Gamma^{\alpha}_{\beta\gamma}-\frac12 J^{\alpha}_{~\delta}\nabla_{\beta}J^{\delta}_{~\gamma} }[/math] with [math]\displaystyle{ \Gamma^{\alpha}_{\beta\gamma} }[/math] being the Levi-Civita connection. The new connection also preserves the complex structure. However, the tensor [math]\displaystyle{ T }[/math] is not yet totally anti-symmetric; the anti-symmetrization will lead to the Nijenhuis tensor. Denote the anti-symmetrization as [math]\displaystyle{ T(Z,X,Y)+\textrm{cyc~in~}X,Y,Z=T(Z,X,Y)+S(Z,X,Y) }[/math], with [math]\displaystyle{ S }[/math] given explicitly as
- [math]\displaystyle{ S(Z,X,Y)=-\frac12\langle X,J(\nabla_{Y}J)Z\rangle-\frac12\langle Y,J(\nabla_{Z}J)X\rangle. }[/math]
[math]\displaystyle{ S }[/math] still preserves the complex structure, i.e. [math]\displaystyle{ S(Z,X,JY)=-S(JZ,X,Y) }[/math].
- [math]\displaystyle{ \begin{align} S(Z,X,JY)+S(JZ,X,Y)&=-\frac12\langle JX, \big(-(\nabla_{JY}J)Z-(J\nabla_ZJ)Y+(J\nabla_YJ)Z+(\nabla_{JZ}J)Y\big)\rangle\\ &=-\frac12\langle JX, Re\big((1-iJ)[(1+iJ)Y,(1+iJ)Z]\big)\rangle.\end{align} }[/math]
So if [math]\displaystyle{ J }[/math] is integrable, then above term vanishes, and the connection
- [math]\displaystyle{ \Gamma^{\alpha}_{\beta\gamma}+T^{\alpha}_{~\beta\gamma}+S^{\alpha}_{~\beta\gamma}. }[/math]
gives the Bismut connection.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Bismut connection.
Read more |