Centre wavelength
From HandWiki
Short description: Power-weighted mean wavelength
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (November 2023) (Learn how and when to remove this template message) |
The centre wavelength is the power-weighted mean wavelength:
- [math]\displaystyle{ \lambda_\text{c} = \frac{1}{P_\text{total}} \int p(\lambda) \lambda\, d\lambda, }[/math]
and the total power is
- [math]\displaystyle{ P_\text{total} = \int p(\lambda) \,d\lambda, }[/math]
where [math]\displaystyle{ p(\lambda) }[/math] is the power spectral density, for example in W/nm.
The above integrals theoretically extend over the entire spectrum, however, it is usually sufficient to perform the integral over the spectrum where the spectral density [math]\displaystyle{ p(\lambda) }[/math] is higher than a fraction of its maximum.
See also
- Dominant wavelength
References
Original source: https://en.wikipedia.org/wiki/Centre wavelength.
Read more |