Chebyshev–Gauss quadrature

From HandWiki

In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:

[math]\displaystyle{ \int_{-1}^{+1} \frac {f(x)} {\sqrt{1 - x^2} }\,dx }[/math]

and

[math]\displaystyle{ \int_{-1}^{+1} \sqrt{1 - x^2} g(x)\,dx. }[/math]

In the first case

[math]\displaystyle{ \int_{-1}^{+1} \frac {f(x)} {\sqrt{1-x^2} }\,dx \approx \sum_{i=1}^n w_i f(x_i) }[/math]

where

[math]\displaystyle{ x_i = \cos \left( \frac {2i-1} {2n} \pi \right) }[/math]

and the weight

[math]\displaystyle{ w_i = \frac {\pi} {n}. }[/math][1]

In the second case

[math]\displaystyle{ \int_{-1}^{+1} \sqrt{1-x^2} g(x)\,dx \approx \sum_{i=1}^n w_i g(x_i) }[/math]

where

[math]\displaystyle{ x_i = \cos \left( \frac {i} {n+1} \pi \right) }[/math]

and the weight

[math]\displaystyle{ w_i = \frac {\pi} {n+1} \sin^2 \left( \frac {i} {n+1} \pi \right). \, }[/math][2]

See also

References

  1. Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, ISBN:978-0-486-61272-0. Equation 25.4.38.
  2. Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, ISBN:978-0-486-61272-0. Equation 25.4.40.

External links