Chebyshev–Gauss quadrature
From HandWiki
In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:
- [math]\displaystyle{ \int_{-1}^{+1} \frac {f(x)} {\sqrt{1 - x^2} }\,dx }[/math]
and
- [math]\displaystyle{ \int_{-1}^{+1} \sqrt{1 - x^2} g(x)\,dx. }[/math]
In the first case
- [math]\displaystyle{ \int_{-1}^{+1} \frac {f(x)} {\sqrt{1-x^2} }\,dx \approx \sum_{i=1}^n w_i f(x_i) }[/math]
where
- [math]\displaystyle{ x_i = \cos \left( \frac {2i-1} {2n} \pi \right) }[/math]
and the weight
- [math]\displaystyle{ w_i = \frac {\pi} {n}. }[/math][1]
In the second case
- [math]\displaystyle{ \int_{-1}^{+1} \sqrt{1-x^2} g(x)\,dx \approx \sum_{i=1}^n w_i g(x_i) }[/math]
where
- [math]\displaystyle{ x_i = \cos \left( \frac {i} {n+1} \pi \right) }[/math]
and the weight
- [math]\displaystyle{ w_i = \frac {\pi} {n+1} \sin^2 \left( \frac {i} {n+1} \pi \right). \, }[/math][2]
See also
References
- ↑ Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, ISBN:978-0-486-61272-0. Equation 25.4.38.
- ↑ Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, ISBN:978-0-486-61272-0. Equation 25.4.40.
External links
- Chebyshev-Gauss Quadrature from Wolfram MathWorld
- Gauss–Chebyshev type 1 quadrature and Gauss–Chebyshev type 2 quadrature, free software in C++, Fortran, and Matlab.
Original source: https://en.wikipedia.org/wiki/Chebyshev–Gauss quadrature.
Read more |