Chemistry:Amide reduction

From HandWiki

Amide reduction is a reaction in organic synthesis where an amide is reduced to either an amine or an aldehyde functional group.[1][2]

Catalytic hydrogenation

Catalytic hydrogenation can be used to reduce amides to amines; however, the process often requires high hydrogenation pressures and reaction temperatures to be effective (i.e. often requiring pressures above 197 atm and temperatures exceeding 200 °C).[1] Selective catalysts for the reaction include copper chromite, rhenium trioxide and rhenium(VII) oxide or bimetallic catalyst.[3][4][5]

Non-catalytic routes to amines

Reducing agents able to effect this reaction include metal hydrides such as lithium aluminium hydride,[6][7][8][9][10] or lithium borohydride in mixed solvents of tetrahydrofuran and methanol.[11]

Reduction of amides to amines

Noncatalytic routes to aldehydes

Some amides can be reduced to aldehydes in the Sonn-Müller method, but most routes to aldehydes involve a well-chosen organometallic reductant.

Lithium aluminum hydride reduces an excess of N,N-disubstituted amides to an aldehyde:[citation needed]

R(CO)NRR' + LiAlH4 → RCHO + HNRR'

With further reduction the alcohol is obtained.

Schwartz's reagent is reduces amides to aldehydes, and so does hydrosilylation with a suitable catalyst. Iron catalysis by triiron dodecacarbonyl in combination with polymethylhydrosiloxane has been reported.[12]

References

  1. 1.0 1.1 Nishimura, Shigeo (2001). Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (1st ed.). New York: Wiley-Interscience. pp. 406–411. ISBN 9780471396987. https://books.google.com/books?id=RjZRAAAAMAAJ&q=0471396982. 
  2. March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7 
  3. Mitsudome, Takato; Miyagawa, Kazuya; Maeno, Zen; Mizugaki, Tomoo; Jitsukawa, Koichiro; Yamasaki, Jun; Kitagawa, Yasutaka; Kaneda, Kiyotomi (2017-08-01). "Mild Hydrogenation of Amides to Amines over a Platinum-Vanadium Bimetallic Catalyst" (in en). Angewandte Chemie International Edition 56 (32): 9381–9385. doi:10.1002/anie.201704199. PMID 28649715. https://onlinelibrary.wiley.com/doi/10.1002/anie.201704199. 
  4. Zhang, Yue; Zhang, Fan; Li, Lin; Liu, Fei; Wang, Aiqin (2022-10-07). "Highly Chemoselective Reduction of Amides to Amines over a Ruthenium‐Molybdenum Bimetallic Catalyst" (in en). ChemistrySelect 7 (37). doi:10.1002/slct.202203030. ISSN 2365-6549. https://onlinelibrary.wiley.com/doi/10.1002/slct.202203030. 
  5. Pennetier, Alex; Hernandez, Willinton Y.; Kusema, Bright T.; Streiff, Stéphane (2021-08-25). "Efficient hydrogenation of aliphatic amides to amines over vanadium-modified rhodium supported catalyst" (in en). Applied Catalysis A: General 624: 118301. doi:10.1016/j.apcata.2021.118301. ISSN 0926-860X. https://www.sciencedirect.com/science/article/pii/S0926860X2100315X. 
  6. Cope, Arthur C.; Ciganek, Engelbert (1959). "N,N-Dimethylcyclohexylmethylamine". Organic Syntheses 39: 19. doi:10.15227/orgsyn.039.0019. 
  7. Wilson, C. V.; Stenberg, J. F. (1956). "Laurylmethylamine". Organic Syntheses 36: 48. doi:10.15227/orgsyn.036.0048. 
  8. Moffett, Robert Bruce (1953). "2,2-Dimethylpyrrolidine". Organic Syntheses 33: 32. doi:10.15227/orgsyn.033.0032. 
  9. Park, Chung Ho; Simmons, Howard E. (1974). "Macrocyclic Diimines: 1,10-Diazacylooctadecane". Organic Syntheses 54: 88. doi:10.15227/orgsyn.054.0088. 
  10. Seebach, Dieter; Kalinowski, Hans-Otto; Langer, Werner; Crass, Gerhard; Wilka, Eva-Maria (1983). "Chiral Media for Asymmetric Solvent Inductions". Organic Syntheses 61: 24. doi:10.15227/orgsyn.061.0024. 
  11. Ookawa, Atsuhiro; Soai, Kenso (1986). "Mixed solvents containing methanol as useful reaction media for unique chemoselective reductions within lithium borohydride". The Journal of Organic Chemistry 51 (21): 4000–4005. doi:10.1021/jo00371a017. 
  12. Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. (2009). "A Convenient and General Iron-Catalyzed Reduction of Amides to Amines". Angewandte Chemie International Edition in English 48 (50): 9507–9510. doi:10.1002/anie.200904677. PMID 19784999. 

External links