Chemistry:Bjerrum length

From HandWiki
Short description: Comparative measure of electrostatic and thermal energy

The Bjerrum length (after Danish chemist Niels Bjerrum 1879–1958 [1]) is the separation at which the electrostatic interaction between two elementary charges is comparable in magnitude to the thermal energy scale, [math]\displaystyle{ k_\text{B} T }[/math], where [math]\displaystyle{ k_\text{B} }[/math] is the Boltzmann constant and [math]\displaystyle{ T }[/math] is the absolute temperature in kelvins. This length scale arises naturally in discussions of electrostatic, electrodynamic and electrokinetic phenomena in electrolytes, polyelectrolytes and colloidal dispersions. [2]

In standard units, the Bjerrum length is given by [math]\displaystyle{ \lambda_\text{B} = \frac{e^2}{4\pi \varepsilon_0 \varepsilon_r \ k_\text{B} T}, }[/math] where [math]\displaystyle{ e }[/math] is the elementary charge, [math]\displaystyle{ \varepsilon_r }[/math] is the relative dielectric constant of the medium and [math]\displaystyle{ \varepsilon_0 }[/math] is the vacuum permittivity. For water at room temperature ([math]\displaystyle{ T \approx 293 \text{ K} }[/math]), [math]\displaystyle{ \varepsilon_r \approx 80 }[/math], so that [math]\displaystyle{ \lambda_\text{B} \approx 0.71 \text{ nm} }[/math].

In Gaussian units, [math]\displaystyle{ 4\pi\varepsilon_0 = 1 }[/math] and the Bjerrum length has the simpler form

Bjerrum length in water calculated as a function of temperature.

[math]\displaystyle{ \lambda_\text{B} = \frac{e^2}{\varepsilon_r k_\text{B} T}. }[/math]

The relative permittivity εr of water decreases so strongly with temperature that the product (εr·T) decreases. Therefore, in spite of the (1/T) relation, the Bjerrum length λB increases with temperature, as shown in the graph.

See also

References

  1. "Obituary: Professor Niels J. Bjerrum". Transactions of the Faraday Society 55: X001. 1959. doi:10.1039/TF959550X001. http://www.rsc.org/delivery/_ArticleLinking/DisplayArticleForFree.cfm?doi=TF959550X001&JournalCode=TF. 
  2. Russel, William B.; Saville, D. A.; Schowalter, William R. (1989). Colloidal Dispersions. New York: Cambridge University Press.