Chemistry:Granadaene

From HandWiki
Granadaene
Granadaene.svg
Names
IUPAC name
(2S)-5-Amino-2-[[(2E,4E,6E,8E,10E,12E,14E,16E,18E,20E,22E,24E)-27-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoctacosa-2,4,6,8,10,12,14,16,18,20,22,24-dodecaenoyl]amino]pentanoic acid
Identifiers
3D model (JSmol)
ChemSpider
Properties
C39H52N2O8
Molar mass 676.851 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

Granadaene is the trivial name of a non-isoprenoid polyene that constitutes the red pigment characteristic of Streptococcus agalactiae (group B streptococcus).

Characteristics

Granadaene contains a conjugated system made up of a linear chain of 12 conjugated double bonds which is connected to the amino acid ornithine at one end and the sugar rhamnose at the other.[1][2]

Granadaene is dark red, odorless, insoluble in water, methanol, ethanol, diethyl ether, acetone, hexane, dimethyl sulfoxide (DMSO), acetonitrile, tetrahydrofuran, chloroform, and in most solvents, it is soluble in DMSO–0.1% trifluoroacetic acid (TFA).[1] Granadaene, can be extracted from cultures of S.agalactiae in granada broth (granada medium without agar) with 0.1 M potassium hydroxide (KOH) and purified by size-exclusion chromatography on Sephadex LH using DMSO–0.1%TFA.[1]

Streptococcus agalactiae in granada broth
Streptococcus agalactiae on granada agar, anaerobic incubation
Ultraviolet/visible spectrum of granadaene, in DMSO+TFA
Proposed metabolic pathway for granadaene biosynthesis

The ultraviolet-visible absorption spectrum of the granadaene (in DMSO/TFA) is almost identical to that of a carotene with a similar conjugated system of 12 double bonds (e.g. alpha-carotene), that is why the GBS pigment was considered to be a carotene for many years.[3]

Granadaene and S.agalactiae detection and identification

Production of the red pigment granadaene is a phenotypic trait specific to β-hemolytic GBS, and because of that, detection of red colonies from clinical samples, when cultivated on granada medium, allows the straightforward identification of GBS.[4][5][6]

Biological relevance

Granadaene is an organic compound produced by S.agalactiae. It is the product of a metabolic pathway similar to that of biosynthesis of fatty acids. The enzymes necessary for the biosynthesis of granadaene in GBS are coded by a gene cluster of 12 genes, the cyl operon, and a pathway for the pigment biosynthesis requiring all the genes of the cyl operon has been proposed.[7][8]

Like the biosynthesis of the pigment, the hemolytic activity requires also in GBS the 12 genes of the cyl operon.[9][10]

The pigment is localized, in GBS, in the cell membrane,[3] where it could play a role in membrane stabilization, similarly to the role of carotenes in other bacterial membranes.[11]

In addition to S.agalactiae the presence of granadaene and the cyl genes has been reported in pigmented Acidipropionibacterium spp. (former Propionibacterium) as A.jensenii, A.thoenii and A.virtanenii , where it can cause defects such as red spots in some cheeses.[12]

Probably granadaene is also present in other related species such as Pseudopropionibacterium rubrum.[8][12][13]

Granadaene is also produced by strains of Lactocococcus garvieae/petaury/formosensis group where the cyl cluster is also present.[14]

The cyl genes has been cloned in Lactococcus lactis (a non-hemolytic non-pigmented Gram-positive bacterium) and the expression of the GBS cyl operon conferred hemolysis, pigmentation, and cytoxicity to Lactococcus lactis. Proving that the expression of the genes of the cyl operon is sufficient for Granadaene production in a heterologous host.[15]

Granadaene and GBS Virulence

The hemolytic activity of granadene is strongly linked to the length of its polyene chain. [16][17]

It has been proposed that granadaene is indeed the hemolysin of S.agalactiae, the GBS hemolysin is a broad-spectrum cytolysin able to destroy many eukaryotic cells, including platelets. Because of this, granadaene is considered an important virulence factor for GBS. [7][8] [18][19][20][21][22][23]

References

  1. 1.0 1.1 1.2 "Granadaene: Proposed Structure of the Group B Streptococcus Polyenic Pigment". Appl Environ Microbiol 72 (9): 6367–6370. 2006. doi:10.1128/aem.00756-06. PMID 16957264. Bibcode2006ApEnM..72.6367R. 
  2. "Clarifying the structure of granadaene: Total synthesis of related analogue - granadaene and confirmation of its absolute stereochemistry". Bioorg Med Chem 20 (22): 6655–6661. 2012. doi:10.1016/j.bmc.2012.09.017. PMID 23043725. 
  3. 3.0 3.1 "Characterization and Incidence of Pigment Production by Human Clinical Group B Streptococci". J Clin Microbiol 8 (1): 105–107. 1978. doi:10.1128/jcm.8.1.105-107.1978. PMID 353069. 
  4. M Rosa-Fraile, J Rodriguez-Granger, M Cueto-Lopez, A Sampedro, E B Gaye, J M Haro, A Andreu (1999). "Use of Granada medium to detect group B streptococcal colonization in pregnant women". J Clin Microbiol 37 (8): 2674–2677. doi:10.1128/JCM.37.8.2674-2677.1999. PMID 10405420. 
  5. "Prevention of perinatal group B streptococcal disease: revised guidelines from CDC, 2010". MMWR Recomm Rep 59(RR-10): 1–32. 2010. https://www.cdc.gov/mmwr/pdf/rr/rr5910.pdf. 
  6. Filkins L , Hauser J, Robinson-Dunn B, Tibbetts R, Boyanton B , Revell P. "Guidelines for the Detection and Identification of Group B Streptococcus. 2021". American Society for Microbiology. https://asm.org/Guideline/Guidelines-for-the-Detection-and-Identification-of. 
  7. 7.0 7.1 "A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta.". J Exp Med 210 (6): 1265–1281. 2013. doi:10.1084/jem.20122753. PMID 23712433. PMC 3674703. https://rupress.org/jem/article-pdf/210/6/1265/1211750/jem_20122753.pdf. 
  8. 8.0 8.1 8.2 "Group B streptococcal haemolysin and pigment, a tale of twins.". FEMS Microbiol. Rev. 38 (5): 932–946. 2014. doi:10.1111/1574-6976.12071. PMID 24617549. 
  9. "Identification of genetic determinants for the hemolytic activity of Streptococcus agalactiae by ISS1 transposition.". J. Bacteriol. 181 (10): 3212–3219. 1999. doi:10.1128/JB.181.10.3212-3219.1999. PMID 10322024. 
  10. "The cyl genes of Streptococcus agalactiae are involved in the production of pigment". FEMS Microbiol. Lett. 188 (2): 125–128. 2000. doi:10.1111/j.1574-6968.2000.tb09182.x. PMID 10913694. 
  11. Taylor RF (1984). "Bacterial tryterpenoids". Microbiol. Rev. 48 (3): 181–198. doi:10.1128/MMBR.48.3.181-198.1984. PMID 6387426. 
  12. 12.0 12.1 "Propionibacterium jensenii produces the polyene pigment granadaene and has hemolytic properties similar to those of Streptococcus agalactiae.". Appl Environ Microbiol 73 (17): 5501–5506. 2007. doi:10.1128/AEM.00545-07. PMID 17630313. Bibcode2007ApEnM..73.5501V. 
  13. Masanori Saito, Noriko Shinozaki-Kuwahara, Osamu Tsudukibashi, Tomomi Hashizume-Takizawa, Ryoki Kobayashi, Tomoko Kurita-Ochiai (2018). "Pseudopropionibacterium rubrum sp. nov., a novel red-pigmented species isolated from human gingival sulcus". Microbiol Immunol 62 (6): 388–394. doi:10.1111/1348-0421.12592. PMID 29687917. 
  14. Neuzil-Bunesova V, Ramirez Garcia A, Modrackova N, Makovska M, Sabolova M, Spröer C, Bunk B, Blom J, Schwab C (2022). "Feed Insects as a Reservoir of Granadaene-Producing Lactococci". Front. Microbiol. 13: Art 848490. doi:10.3389/fmicb.2022.848490. PMID 35615513. 
  15. Armistead B, Whidbey C, Iyer LM, Herrero-Foncubierta P, Quach P, Haidour A, Aravind L, Cuerva JM, Jaspan HB, Rajagopal L. (2020). "The cyl Genes Reveal the Biosynthetic and Evolutionary Origins of the Group B Streptococcus Hemolytic Lipid, Granadaene". Front. Microbiol. 10: 3123. doi:10.3389/fmicb.2019.03123. PMID 32038561. 
  16. Kristanc L, Božič B, Jokhadar ŠZ, Dolenc MS, Gomišček G. (2019). "The pore-forming action of polyenes: From model membranes to living organisms". Biochim Biophys Acta Biomembr 186 (2): 418–430. doi:10.1016/j.bbamem.2018.11.006. PMID 30458121. 
  17. Armistead B, Herrero-Foncubierta P, Coleman M, Quach P, Whidbey C, Justicia J, Tapia R, Casares R, Millán A, Haidour A, Rodriguez Granger J, Vornhagen J, Santana-Ufret V, Merillat S, Waldorf KA, Cuerva JM, Rajagopal L (2020). "Lipid analogs reveal features critical for hemolysis and diminish granadaene mediated Group B Streptococcus infection". Nature Communications 11 (1): 1502. doi:10.1038/s41467-020-15282-0. PMID 32198389. PMC 7083881. Bibcode2020NatCo..11.1502A. https://doi.org/10.1038/s41467-020-15282-0. Retrieved 30 May 2022. 
  18. Liu Y, Liu J. (2022). "Group B Streptococcus: Virulence Factors and Pathogenic Mechanism.". Microorganisms 15 (12): 2483. doi:10.3390/microorganisms10122483. PMID 36557736. 
  19. "A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury.". EMBO Mol. Med. 7 (4): 488–505. 2015. doi:10.15252/emmm.201404883. PMID 25750210. 
  20. Armistead B, Oler E, Adams Waldorf K, Rajagopal L. (2019). "The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen". J Mol Biol 431 (16): 2914–2931. doi:10.1016/j.jmb.2019.01.035. PMID 30711542. 
  21. Armistead B, Herrero-Foncubierta P, Coleman M, Quach P, Whidbey C, Justicia J, Tapia R, Casares R, Millán A, Haidour A, Granger JR, Vornhagen J, Santana-Ufret V, Merillat S, Adams Waldorf K, Cuerva JM, Rajagopal L. (2020). "Lipid analogs reveal features critical for hemolysis and diminish granadaene mediated Group B Streptococcus infection.". Nat. Commun. 11 (1): 1502. doi:10.1038/s41467-020-15282-0. PMID 32198389. Bibcode2020NatCo..11.1502A. 
  22. Huebner EM, Gudjónsdóttir MJ, Dacanay MB, Nguyen S, Brokaw A, Sharma K, Elfvin A, Hentz E, Rivera YR, Burd N, Shivakumar M, Coler B, Li M, Li A, Munson J, Orvis A, Coleman M, Jacobsson B, Rajagopal L, Adams Waldorf KM. (2022). "Virulence, phenotype and genotype characteristics of invasive group B Streptococcus isolates obtained from Swedish pregnant women and neonates". Ann Clin Microbiol Antimicrob 21 (1): 43. doi:10.1186/s12941-022-00534-2. PMID 36229877. 
  23. Jahn, K.; Shumba, P.; Quach, P.; Müsken, M.; Wesche, J.; Greinacher, A.; Rajagopal, L.; Hammerschmidt, S.; Siemens, N. (2022). "Group B Streptococcal Hemolytic Pigment Impairs Platelet Function in a Two-Step Process". Cells 11 (10): 1637. doi:10.3390/cells11101637. PMID 35626674.