Chemistry:JP-10 (fuel)

From HandWiki
Short description: Jet fuel

JP-10 fuel, ("Jet Propellant 10"), is a jet fuel, specified and used widely in military applications but it is not a kerosene based fuel. It is a gas turbine fuel for missiles.[1] It contains mainly exo-tetrahydrodicyclopentadiene (a synthetic fuel), and adamantane. However, it is usually classed as a single component fuel, as well as a hydrocarbon.[2] It is produced by catalytic hydrogenation of dicyclopentadiene and then isomerization. It superseded JP-9 because of a lower temperature service limit.[1] It is also used by subsonic cruise missiles.[3]

Uses

It absorbs heat energy and so is endothermic with a relatively high density of 940 kg/m3. It has a low freezing point of less than −110 °C (−166 °F) and the flash point is 130 °F (54 °C). The high energy density of 39.6 MJ/m3 makes it ideal for military aerospace applications - its primary use. The ignition and burn chemistry has been extensively studied.[4][5][6] The exo isomer also has a low freezing point.[7][8] Its other properties have also been studied extensively.[9][10][11][12][13]

Even though its uses are mainly for the military, the relatively high cost has meant research has been undertaken to find lower costs routes including the use of cellulosic materials.[14]

Further research

Current and past areas of research focus on:

  • The pyrolysis and kinetics of the fuel.[15][16]
  • Catalytic addition of nanoparticles such as those based on Cerium Oxide.[17]
  • Catalysis for the endo to exo isomerisation.[18][19]
  • Use of additives in JP-10 for various enhancements.[20][21]

References

  1. 1.0 1.1 Aviation Fuel Properties. Coordinating Research Council. 1983. p. 3. CRC Report Nº 530. http://apps.dtic.mil/dtic/tr/fulltext/u2/a132106.pdf. Retrieved 2023-12-06. 
  2. Ciccarelli, G.; Card, J. (February 2006). "Detonation in Mixtures of JP-10 Vapor and Air" (in en). AIAA Journal 44 (2): 362–367. doi:10.2514/1.18582. ISSN 0001-1452. https://arc.aiaa.org/doi/10.2514/1.18582. 
  3. Coggeshall, Katharine. "Revolutionizing Tomahawk fuel". https://www.lanl.gov/discover/publications/national-security-science/2020-spring/tomahawk.php. 
  4. "Exo-tricyclo[5.2.1.0(2.6)decane"] (in en). https://webbook.nist.gov/cgi/cbook.cgi?ID=U215287&Units=SI&Mask=80. 
  5. Li, S. C.; Varatharajan, B.; Williams, F. A. (December 2001). "Chemistry of JP-10 Ignition" (in en). AIAA Journal 39 (12): 2351–2356. doi:10.2514/2.1241. ISSN 0001-1452. https://arc.aiaa.org/doi/10.2514/2.1241. 
  6. Davidson, D. F.; Horning, D. C.; Herbon, J. T.; Hanson, R. K. (2000-01-01). "Shock tube measurements of JP-10 ignition". Proceedings of the Combustion Institute 28 (2): 1687–1692. doi:10.1016/S0082-0784(00)80568-8. ISSN 1540-7489. https://www.sciencedirect.com/science/article/pii/S0082078400805688. 
  7. Herbinet, Olivier; Sirjean, Baptiste; Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Scacchi, Gérard; Marquaire, Paul-Marie (2006-10-01). "Primary Mechanism of the Thermal Decomposition of Tricyclodecane" (in en). The Journal of Physical Chemistry A 110 (39): 11298–11314. doi:10.1021/jp0623802. ISSN 1089-5639. PMID 17004739. Bibcode2006JPCA..11011298H. https://pubs.acs.org/doi/10.1021/jp0623802. 
  8. Wu, Junjun; Gao, Lu Gem; Ning, Hongbo; Ren, Wei; Truhlar, Donald G. (2020-06-01). "Direct dynamics of a large complex hydrocarbon reaction system: The reaction of OH with exo-tricyclodecane (the main component of Jet Propellant-10)". Combustion and Flame 216: 82–91. doi:10.1016/j.combustflame.2020.02.019. ISSN 0010-2180. https://www.sciencedirect.com/science/article/pii/S0010218020300821. 
  9. "Exo-tricyclo[5.2.1.0(2.6)decane"] (in en). https://www.chemeo.com/cid/70-324-4/Exo-tricyclo-5-2-1-0-2-6-decane. 
  10. Seiser, R.; Niemann, U.; Seshadri, K. (2011-01-01). "Experimental study of combustion of n-decane and JP-10 in non-premixed flows". Proceedings of the Combustion Institute 33 (1): 1045–1052. doi:10.1016/j.proci.2010.06.078. ISSN 1540-7489. https://www.sciencedirect.com/science/article/pii/S1540748910001380. 
  11. Tao, Yujie; Xu, Rui; Wang, Kun; Shao, Jiankun; Johnson, Sarah E.; Movaghar, Ashkan; Han, Xu; Park, Ji-Woong et al. (2018-12-01). "A Physics based approach to modeling real fuel combustion chemistry III Reaction kinetic model of JP10". Combustion and Flame 198: 466–476. doi:10.1016/j.combustflame.2018.08.022. ISSN 0010-2180. https://www.sciencedirect.com/science/article/pii/S0010218018303870. 
  12. Li, Heng; Liu, Guozhu; Jiang, Rongpei; Wang, Li; Zhang, Xiangwen (2015-05-01). "Experimental and kinetic modeling study of exo-TCD pyrolysis under low pressure". Combustion and Flame 162 (5): 2177–2190. doi:10.1016/j.combustflame.2015.01.015. ISSN 0010-2180. https://www.sciencedirect.com/science/article/pii/S0010218015000188. 
  13. Goh, K. H. H.; Geipel, P.; Hampp, F.; Lindstedt, R. P. (2013-01-01). "Regime transition from premixed to flameless oxidation in turbulent JP-10 flames". Proceedings of the Combustion Institute 34 (2): 3311–3318. doi:10.1016/j.proci.2012.06.173. ISSN 1540-7489. https://www.sciencedirect.com/science/article/pii/S1540748912002817. 
  14. Li, Guangyi; Hou, Baolin; Wang, Aiqin; Xin, Xuliang; Cong, Yu; Wang, Xiaodong; Li, Ning; Zhang, Tao (2019-08-26). "Making JP‐10 Superfuel Affordable with a Lignocellulosic Platform Compound" (in en). Angewandte Chemie International Edition 58 (35): 12154–12158. doi:10.1002/anie.201906744. ISSN 1433-7851. https://onlinelibrary.wiley.com/doi/10.1002/anie.201906744. 
  15. Chenoweth, Kimberly; van Duin, Adri C. T.; Dasgupta, Siddharth; Goddard III, William A. (2009-03-05). "Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel" (in en). The Journal of Physical Chemistry A 113 (9): 1740–1746. doi:10.1021/jp8081479. ISSN 1089-5639. https://pubs.acs.org/doi/10.1021/jp8081479. 
  16. Zhong, Bei-jing; Zeng, Zhao-mei; Zhang, Hou-zhen (2022-03-15). "An experimental and kinetic modeling study of JP-10 combustion". Fuel 312: 122900. doi:10.1016/j.fuel.2021.122900. ISSN 0016-2361. https://www.sciencedirect.com/science/article/pii/S0016236121027617. 
  17. Van Devener, Brian; Anderson, Scott L. (2006-09-01). "Breakdown and Combustion of JP-10 Fuel Catalyzed by Nanoparticulate CeO 2 and Fe 2 O 3" (in en). Energy & Fuels 20 (5): 1886–1894. doi:10.1021/ef060064g. ISSN 0887-0624. https://pubs.acs.org/doi/10.1021/ef060064g. 
  18. Huang, Ming-Yu; Wu, Jung-Chung; Shieu, Fuh-Sheng; Lin, Jiang-Jen (2011-03-01). "Preparation of high energy fuel JP-10 by acidity-adjustable chloroaluminate ionic liquid catalyst". Fuel 90 (3): 1012–1017. doi:10.1016/j.fuel.2010.11.041. ISSN 0016-2361. https://www.sciencedirect.com/science/article/pii/S0016236110006563. 
  19. Xing, Enhui; Mi, Zhentao; Xin, Chengwei; Wang, Li; Zhang, Xiangwen (2005-04-20). "Endo- to exo-isomerization of tetrahydrodicyclopentadiene catalyzed by commercially available zeolites". Journal of Molecular Catalysis A: Chemical 231 (1): 161–167. doi:10.1016/j.molcata.2005.01.015. ISSN 1381-1169. https://www.sciencedirect.com/science/article/pii/S1381116905000555. 
  20. E, Xiu-tian-feng; Pan, Lun; Zhang, Xiangwen; Zou, Ji-Jun (2020-09-15). "Influence of quadricyclane additive on ignition and combustion properties of high-density JP-10 fuel". Fuel 276: 118047. doi:10.1016/j.fuel.2020.118047. ISSN 0016-2361. https://www.sciencedirect.com/science/article/pii/S0016236120310437. 
  21. Chung, H. S.; Chen, C. S. H.; Kremer, R. A.; Boulton, J. R.; Burdette, G. W. (1999-05-01). "Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels" (in en). Energy & Fuels 13 (3): 641–649. doi:10.1021/ef980195k. ISSN 0887-0624. https://pubs.acs.org/doi/10.1021/ef980195k.