Chemistry:Jostel's TSH index

From HandWiki
Jostel's TSH index
Medical diagnostics
Reference ranges for TSH, FT4, JTI and SPINA-GT
Reference ranges for JTI and other thyroid function tests
SynonymsJostel's thyrotropin index
Reference range1.3–4.1
MeSHD013960

Jostel's TSH index (TSHI or JTI), also referred to as Jostel's thyrotropin index or Thyroid Function index (TFI), is a method for estimating the thyrotropic (i.e. thyroid stimulating) function of the anterior pituitary lobe in a quantitative way.[1][2] The equation has been derived from the logarithmic standard model of thyroid homeostasis.[3][4][5][6] In a paper from 2014 further study was suggested to show if it is useful,[7] but the 2018 guideline by the European Thyroid Association for the diagnosis of uncertain cases of central hypothyroidism regarded it as beneficial.[2] It is also recommended for purposes of differential diagnosis in the sociomedical expert assessment.[8]

How to determine JTI

Jostel's TSH index can be calculated with

[math]\displaystyle{ TSHI = \ln(TSH) + 0.1345 \cdot FT4 }[/math]

from equilibrium serum concentrations of thyrotropin (TSH), free T4 (FT4) and a correction coefficient derived from the logarithmic standard model (β = 0.1345).

An alternative standardised form (standardised TSH index or sTSHI) is calculated with.[1]

[math]\displaystyle{ sTSHI = \frac {TSHI - 2.7} {0.676} }[/math]

as a z-transformed value incorporating mean (2.7) and standard deviation (0.676) of TSHI in a reference population[5]

Reference ranges

Percentiles of Jostel's TSH index
Percentiles for Jostel's TSH index (TSHI or JTI) along with reference ranges for thyroid's secretory capacity (SPINA-GT) and univariable reference ranges for thyrotropin (TSH) and free thyroxine (FT4), shown in the two-dimensional phase plane defined by serum concentrations of TSH and FT4.
Parameter Lower limit Upper limit Unit
TSHI 1.3[1] 4.1[1]
sTSHI -2[1] 2[1]

Clinical significance

The TSH index is reduced in patients with secondary hypothyroidism resulting from thyrotropic insufficiency.[1][9][10][11] For this indication, it has, however, up to now only been validated in adults.[12] JTI was also found reduced in cases of TACITUS syndrome (non-thyroidal illness syndrome) as an example of type 1 thyroid allostasis.[13][14] Conversely, an elevated thyroid function index may serve as a biomarker for type 2 allostasis and contextual stress.[15][16]

Jostel's TSH index may decrease under therapy with the antidiabetic drug metformin, especially in women under oral contraceptives.[17]

In two large population-based cohorts included in the Study of Health in Pomerania differentially correlated to some markers of body composition. Correlation was positive to body mass index (BMI), waist circumference and fat mass, but negative to body cell mass.[18] With the exception of fat mass all correlations were age-dependent.[18] Very similar observations have been made earlier in the NHANES dataset.[19]

In Parkinson's disease, JTI is significantly elevated in early sub-types of the disease compared to an advanced group.[20]

A longitudinal study in euthyroid subjects with structural heart disease found that JTI predicts the risk of malignant arrhythmia including ventricular fibrillation and ventricular tachycardia.[21] This applies to both incidence and event-free survival.[21] It was therefore concluded that an elevated set point of thyroid homeostasis may contribute to cardiovascular risk. A positive correlation of JTI to SIQALS 2,[16] a score for allostatic load, suggests that thyroid hormones are among the mediators linking stress to major cardiovascular endpoints.[22]

Another study demonstrated the TSH index to inversely correlate to thyroid's secretory capacity and thyroid volume.[23] It is unclear if this finding reflects shortcomings of the index (i.e. low specificity in the setting of subclinical hypothyroidism) or plastic responses of the pituitary gland to beginning hypothyroidism.[citation needed]

In subjects with type 2 diabetes, treatment with beta blockers resulted in increased TSH index, but the mechanism is unclear.[24]

Negative correlation of Jostel's TSH index to the urinary excretion of certain phthalates suggests that endocrine disruptors may affect the central set point of thyroid homeostasis.[25]

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 "The use of thyroid function tests in the diagnosis of hypopituitarism: definition und evaluation of the TSH Index". Clin. Endocrinol. (Oxf) 71 (4): 529–34. October 2009. doi:10.1111/j.1365-2265.2009.03534.x. PMID 19226261. 
  2. 2.0 2.1 Persani, L; Brabant, G; Dattani, M; Bonomi, M; Feldt-Rasmussen, U; Fliers, E; Gruters, A; Maiter, D et al. (October 2018). "2018 European Thyroid Association (ETA) Guidelines on the Diagnosis and Management of Central Hypothyroidism.". European Thyroid Journal 7 (5): 225–237. doi:10.1159/000491388. PMID 30374425. 
  3. "Regulation of the pituitary-thyroid axis in man: relationship of TSH concentration to concentration of free and total thyroxine in plasma". J Clin Endocrinol Metab 27 (2): 251–255. February 1967. doi:10.1210/jcem-27-2-251. PMID 4163614. 
  4. Cohen, J. L., Thyroid-stimulation hormone and its disorders. In: Becker, K. L. (Hrsg.) Principles and Practice of Endocrinology and Metabolism. S. 144–52, J. B. Lippincott Company, Philadelphia, PA, USA, 1990
  5. 5.0 5.1 Dietrich, JW; Landgrafe, G; Fotiadou, EH (2012). "TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis". J Thyroid Res 2012: 351864. doi:10.1155/2012/351864. PMID 23365787. .
  6. Dietrich, Johannes W.; Landgrafe-Mende, Gabi; Wiora, Evelin; Chatzitomaris, Apostolos; Klein, Harald H.; Midgley, John E. M.; Hoermann, Rudolf (2016-06-09). "Calculated Parameters of Thyroid Homeostasis: Emerging Tools for Differential Diagnosis and Clinical Research". Frontiers in Endocrinology 7: 57. doi:10.3389/fendo.2016.00057. PMID 27375554. 
  7. Fliers, Eric; Korbonits, Marta; Romijn, J. A. (2014) (in en). Clinical Neuroendocrinology. Elsevier. p. 146. ISBN 978-0-444-62612-7. https://books.google.com/books?id=qH9zAwAAQBAJ&pg=PA146. 
  8. Dietrich, Johannes W.; Schifferdecker, Ekkehard; Schatz, Helmut; Klein, Harald (2022). "Endokrine und Stoffwechseldiagnostik". Die Ärztliche Begutachtung. Springer Reference Medizin. pp. 1–13. doi:10.1007/978-3-662-61937-7_83-1. ISBN 978-3-662-61937-7. 
  9. Chiloiro, Sabrina; Tartaglione, Tommaso; Capoluongo, Ettore Domenico; Angelini, Flavia; Arena, Vincenzo; Giampietro, Antonella; Bianchi, Antonio; Zoli, Angelo et al. (1 August 2018). "Hypophysitis outcome and factors predicting responsiveness to glucocorticoid therapy: a prospective and double-arm study". The Journal of Clinical Endocrinology & Metabolism 103 (10): 3877–3889. doi:10.1210/jc.2018-01021. PMID 30085134. 
  10. Persani, L; Cangiano, B; Bonomi, M (1 January 2019). "The diagnosis and management of central hypothyroidism in 2018.". Endocrine Connections 8 (2): R44–R54. doi:10.1530/EC-18-0515. PMID 30645189. 
  11. Marlier, Joke; T'Sjoen, Guy; Kaufman, Jean; Lapauw, Bruno (October 2022). "Central hypothyroidism: are patients undertreated?". European Thyroid Journal 11 (6): ETJ–21–0128. doi:10.1530/ETJ-21-0128. PMID 36205647. 
  12. Schoenmakers, N; Alatzoglou, KS; Chatterjee, VK; Dattani, MT (2015). "Recent advances in central congenital hypothyroidism". J Endocrinol 227 (3): R51-71. doi:10.1530/JOE-15-0341. PMID 26416826. 
  13. Fan, S; Ni, X; Wang, J; Zhang, Y; Tao, S; Chen, M; Li, Y; Li, J (February 2016). "Low Triiodothyronine Syndrome in Patients With Radiation Enteritis: Risk Factors and Clinical Outcomes an Observational Study.". Medicine 95 (6): e2640. doi:10.1097/MD.0000000000002640. PMID 26871787. 
  14. Bingyan, Zhan; Dong, Wei (7 July 2019). "Impact of thyroid hormones on asthma in older adults". Journal of International Medical Research 47 (9): 4114–4125. doi:10.1177/0300060519856465. PMID 31280621. 
  15. Lei, MK; Beach, SR; Simons, RL; Barr, AB; Cutrona, CE; Philibert, RA (Mar 2016). "Stress, relationship satisfaction, and health among African American women: Genetic moderation of effects". J Fam Psychol 30 (2): 221–32. doi:10.1037/fam0000140. PMID 26376424. 
  16. 16.0 16.1 Dietrich, Johannes Wolfgang; Hoermann, Rudolf; Midgley, John E. M.; Bergen, Friederike; Müller, Patrick (26 October 2020). "The Two Faces of Janus: Why Thyrotropin as a Cardiovascular Risk Factor May Be an Ambiguous Target". Frontiers in Endocrinology 11: 542710. doi:10.3389/fendo.2020.542710. PMID 33193077. 
  17. Krysiak, Robert; Kowalcze, Karolina; Wolnowska, Monika; Okopień, Bogusław (5 January 2020). "The impact of oral hormonal contraception on metformin action on hypothalamic-pituitary-thyroid axis activity in women with diabetes and prediabetes: A pilot study". Journal of Clinical Pharmacy and Therapeutics 45 (5): 937–945. doi:10.1111/jcpt.13105. PMID 31903641. 
  18. 18.0 18.1 Ittermann, T; Markus, MRP; Bahls, M; Felix, SB; Steveling, A; Nauck, M; Völzke, H; Dörr, M (2021-05-18). "Low serum TSH levels are associated with low values of fat-free mass and body cell mass in the elderly.". Scientific Reports 11 (1): 10547. doi:10.1038/s41598-021-90178-7. PMID 34006958. Bibcode2021NatSR..1110547I. 
  19. Chatzitomaris, A; Hoermann, R; Midgley, JE; Hering, S; Urban, A; Dietrich, B; Abood, A; Klein, HH et al. (2017). "Thyroid Allostasis-Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming.". Frontiers in Endocrinology 8: 163. doi:10.3389/fendo.2017.00163. PMID 28775711. 
  20. Tan, Y; Gao, L; Yin, Q; Sun, Z; Man, X; Du, Y; Chen, Y (April 2021). "Thyroid hormone levels and structural parameters of thyroid homeostasis are correlated with motor subtype and disease severity in euthyroid patients with Parkinson's disease.". The International Journal of Neuroscience 131 (4): 346–356. doi:10.1080/00207454.2020.1744595. PMID 32186220. 
  21. 21.0 21.1 Müller, Patrick; Dietrich, Johannes W.; Lin, Tina; Bejinariu, Alexandru; Binnebößel, Stephan; Bergen, Friederike; Schmidt, Jan; Müller, Sarah-Kristin et al. (January 2020). "Usefulness of Serum Free Thyroxine Concentration to Predict Ventricular Arrhythmia Risk in Euthyroid Patients with Structural Heart Disease". The American Journal of Cardiology 125 (8): 1162–1169. doi:10.1016/j.amjcard.2020.01.019. PMID 32087999. 
  22. Tawakol, A; Ishai, A; Takx, RA; Figueroa, AL; Ali, A; Kaiser, Y; Truong, QA; Solomon, CJ et al. (25 February 2017). "Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study.". Lancet 389 (10071): 834–845. doi:10.1016/S0140-6736(16)31714-7. PMID 28088338. 
  23. Hoermann, R; Midgley, JEM; Larisch, R; Dietrich, JW (19 July 2018). "The Role of Functional Thyroid Capacity in Pituitary Thyroid Feedback Regulation.". European Journal of Clinical Investigation 48 (10): e13003. doi:10.1111/eci.13003. PMID 30022470. 
  24. Yang, Lijuan; Sun, Xiuqin; Zhao, Yi; Tao, Hong (7 March 2022). "Effects of Antihypertensive Drugs on Thyroid Function in Type 2 Diabetes Patients With Euthyroidism". Frontiers in Pharmacology 13: 802159. doi:10.3389/fphar.2022.802159. PMID 35330837. 
  25. Chen, Y; Zhang, W; Chen, J; Wang, N; Chen, C; Wang, Y; Wan, H; Chen, B et al. (2021). "Association of Phthalate Exposure with Thyroid Function and Thyroid Homeostasis Parameters in Type 2 Diabetes.". Journal of Diabetes Research 2021: 4027380. doi:10.1155/2021/4027380. PMID 34746318. 

External links