Chemistry:Methylammonium lead halide

From HandWiki
[CH
3
NH
3
]PbX
3
crystal structure.[1]

Methylammonium lead halides (MALHs) are solid compounds with perovskite structure and a chemical formula of [CH
3
NH
3
]+
Pb2+(X
)
3
, where X = Cl, Br or I. They have potential applications in solar cells,[2] lasers, light-emitting diodes, photodetectors, radiation detectors,[3][4] scintillator,[5] magneto-optical data storage[6] and hydrogen production.[7]


Properties and synthesis

The first MALHs to be synthesized were the methylammonium derivatives [CH
3
NH
3
]SnX
3
and [CH
3
NH
3
]PbX
3
. Their potential in the area of energy conversion wasn't realized until decades later.[8] In the [CH
3
NH
3
]PbX
3
cubic crystal structure the methylammonium cation ([CH
3
NH
3
]+
) is surrounded by PbX
6
octahedra. The X ions are not fixed and can migrate through the crystal with an activation energy of 0.6 eV; the migration is vacancy assisted.[1] The methylammonium cations can rotate within their cages. At room temperature the ions have the CN axis aligned towards the face directions of the unit cells and the molecules randomly change to another of the six face directions on a 3 ps time scale.[9]

File:CH3NH3PbI3 crystal growth.webm File:CH3NH3PbBr3 crystal growth.webm The solubility of MALHs strongly decreases with increased temperature: from 0.8 g/mL at 20 °C to 0.3 g/mL at 80 °C for [CH
3
NH
3
]PbBr
3
in dimethylformamide. This property is used in the growth of MALH single crystals and films from solution, using a mixture of [CH
3
NH
3
]X
and PbX
2
powders as the precursor. The growth rates are 3–20 mm3/hour for [CH
3
NH
3
]PbI
3
and reach 38 mm3/hour for [CH
3
NH
3
]PbBr
3
crystals.[7]

The resulting crystals are metastable and dissolve in the growth solution when cooled to room temperature. They have bandgaps of 2.18 eV for [CH
3
NH
3
]PbBr
3
and 1.51 eV for [CH
3
NH
3
]PbI
3
, while their respective carrier mobilities are 24 and 67 cm2/(V·s).[7] Their thermal conductivity is exceptionally low, ~0.5 W/(K·m) at room temperature for [CH
3
NH
3
]PbI
3
.[10]


Thermal decomposition of [CH
3
NH
3
]PbI
3
gives methyl iodide (CH
3
I
) and ammonia (NH
3
).[11] [12]

[CH
3
NH
3
]PbI
3
→ PbI
2
+ CH
3
I + NH
3

Applications

MALHs have potential applications in solar cells, lasers,[13] light-emitting diodes, photodetectors, radiation detectors,[4] scintillator[5] and hydrogen production.[7] The power conversion efficiency of MALH solar cells exceeds 19%.[14][15]

Historic references

See also

References

  1. 1.0 1.1 Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; o'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful (2015). "Ionic transport in hybrid lead iodide perovskite solar cells". Nature Communications 6: 7497. doi:10.1038/ncomms8497. PMID 26105623. Bibcode2015NatCo...6.7497E. 
  2. Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo; Miyasaka, Tsutomu (2009-05-06). "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society 131 (17): 6050–6051. doi:10.1021/ja809598r. ISSN 0002-7863. PMID 19366264. https://doi.org/10.1021/ja809598r. 
  3. Náfrádi, Bálint (October 16, 2015). "Methylammonium Lead Iodide for Efficient X-ray Energy Conversion". J. Phys. Chem. C 2015 (119): 25204–25208. doi:10.1021/acs.jpcc.5b07876. 
  4. 4.0 4.1 Yakunin, S.; Dirin, D.; Shynkarenko, Y.; Morad, V.; Cherniukh, I.; Nazarenko, O.; Kreil, D.; Nauser, T. et al. (2016). "Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites". Nature Photonics 10 (9): 585–589. doi:10.1038/nphoton.2016.139. Bibcode2016NaPho..10..585Y. 
  5. 5.0 5.1 Birowosuto, M. D. (16 November 2016). "X-ray Scintillation in Lead Halide Perovskite Crystals". Sci. Rep. 6: 37254. doi:10.1038/srep37254. PMID 27849019. Bibcode2016NatSR...637254B. 
  6. Náfrádi, Bálint (24 November 2016). "Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3". Nature Communications 7: 13406. doi:10.1038/ncomms13406. PMID 27882917. Bibcode2016NatCo...713406N. 
  7. 7.0 7.1 7.2 7.3 7.4 7.5 Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei et al. (2015). "High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization". Nature Communications 6: 7586. doi:10.1038/ncomms8586. PMID 26145157. Bibcode2015NatCo...6.7586S. 
  8. Cheetham, Anthony K.; Seshadri, Ram; Wudl, Fred (2022-06-30). "Chemical synthesis and materials discovery" (in en). Nature Synthesis 1 (7): 514–520. doi:10.1038/s44160-022-00096-3. ISSN 2731-0582. https://www.nature.com/articles/s44160-022-00096-3. 
  9. Bakulin, A.A.; Selig, O.; Bakker, H.J.; Rezus, Y.L.A.; Muller, C.; Glaser, T.; Lovrincic, R.; Sun, Z. et al. (2015). "Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites". J. Phys. Chem. Lett. 6 (18): 3663–3669. doi:10.1021/acs.jpclett.5b01555. PMID 26722739. http://spiral.imperial.ac.uk/bitstream/10044/1/48952/2/Paper_MArotatioin_v31.pdf. 
  10. Pisoni, Andrea; Jaćimović, Jaćim; Barišić, Osor S.; Spina, Massimo; Gaál, Richard; Forró, László; Horváth, Endre (2014). "Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3". The Journal of Physical Chemistry Letters 5 (14): 2488–2492. doi:10.1021/jz5012109. PMID 26277821. 
  11. Juarez-Perez, Emilio J.; Hawash, Zafer; Raga, Sonia R.; Ono, Luis K.; Qi, Yabing (2016). "Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis". Energy Environ. Sci. 9 (11): 3406–3410. doi:10.1039/C6EE02016J. ISSN 1754-5692. 
  12. Williams, Alice E.; Holliman, Peter J.; Carnie, Matthew J.; Davies, Matthew L.; Worsley, David A.; Watson, Trystan M. (2014). "Perovskite processing for photovoltaics: a spectro-thermal evaluation". J. Mater. Chem. A 2 (45): 19338–19346. doi:10.1039/C4TA04725G. ISSN 2050-7488. 
  13. Deschler, Felix; Price, Michael; Pathak, Sandeep; Klintberg, Lina E.; Jarausch, David-Dominik; Higler, Ruben; Hüttner, Sven; Leijtens, Tomas et al. (2 April 2014). "High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors". The Journal of Physical Chemistry Letters 5 (8): 1421–1426. doi:10.1021/jz5005285. PMID 26269988. 
  14. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J. et al. (2014). "Interface engineering of highly efficient perovskite solar cells". Science 345 (6196): 542–6. doi:10.1126/science.1254050. PMID 25082698. Bibcode2014Sci...345..542Z. 
  15. Heo, Jin Hyuck; Song, Dae Ho; Han, Hye Ji; Kim, Seong Yeon; Kim, Jun Ho; Kim, Dasom; Shin, Hee Won; Ahn, Tae Kyu et al. (2015). "Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate". Advanced Materials 27 (22): 3424–30. doi:10.1002/adma.201500048. PMID 25914242.