Chemistry:Otera's catalyst

From HandWiki
Otera's catalyst
Skeletal formula of Otera's catalyst
Ball-and-stick model of the Otera's catalyst molecule
Names
Other names
Octabutyltetrathiocyanatostannoxane
Identifiers
3D model (JSmol)
ChemSpider
Properties
C36H72N4O2S4Sn4
Molar mass 1196.08 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Otera's catalyst, named after Japanese chemist Junzo Otera, is an organostannane compound which has been used as a transesterification catalyst. This isothioscyanate compound is a member of a family of organostannanes reported by Wada and coworkers,[1] and elaborated upon by Otera and coworkers.[2]

Preparation

This class of compounds may be prepared generally by the reaction of an organotin halide and oxide:[3]

2 R2SnO + 2 R2SnX2 → (XR2SnOSnR2X)2

In particular, the thiocyanate compound was prepared by the reaction of dibutyltin oxide with dibutyltin diisothiocyanate.[1] Otherwise, this compound is not commercially available.

Applications

This thiocyanate compound can be used as a transesterification catalyst.[2] Although it is not well known, it has been used in a number of total syntheses.[4][5]

In this application, the reaction occurs via the displacement of the bridging isothiocyanate ligands with the incoming alcohol to form an alcohol-bridged active catalyst. Tin acts as the Lewis acid, and gives the transesterified product.[2][3]

References

  1. 1.0 1.1 Wada, M.; Nishino, M.; Okawara, R. (1965). "Preparation and properties of dialkyltin isothiocyanate derivatives". J. Organomet. Chem. 3: 70–75. doi:10.1016/S0022-328X(00)82737-0. 
  2. 2.0 2.1 2.2 Otera, J (1991). "Novel template effects of distannoxane catalysts in highly efficient transesterification and esterification". J. Org. Chem. 56 (18): 5307–5311. doi:10.1021/jo00018a019. 
  3. 3.0 3.1 Otera, Junzo. (1993). "Transesterification". Chem. Rev. 93 (4): 1449–1470. doi:10.1021/cr00020a004. 
  4. Trost, BM (2005). "Synthesis of Amphidinolide P". J. Am. Chem. Soc. 127 (50): 17921–17937. doi:10.1021/ja055967n. PMID 16351124. 
  5. Trost, BM; Stiles, DT (2007). "Total Synthesis of Spirotryprostatin B via Diastereoselective Prenylation". Org. Lett. 9 (15): 2763–6. doi:10.1021/ol070971k. PMID 17592853.