Christoffel–Darboux formula

From HandWiki

In mathematics, the Christoffel–Darboux formula or Christoffel–Darboux theorem is an identity for a sequence of orthogonal polynomials, introduced by Elwin Bruno Christoffel (1858) and Jean Gaston Darboux (1878). It states that

[math]\displaystyle{ \sum_{j=0}^n \frac{f_j(x) f_j(y)}{h_j} = \frac{k_n}{h_n k_{n+1}} \frac{f_n(y) f_{n+1}(x) - f_{n+1}(y) f_n(x)}{x - y} }[/math]

where fj(x) is the jth term of a set of orthogonal polynomials of squared norm hj and leading coefficient kj.

There is also a "confluent form" of this identity by taking [math]\displaystyle{ y\to x }[/math] limit:[math]\displaystyle{ \sum_{j=0}^n \frac{f_j^2(x)}{h_j} = \frac{k_n}{h_n k_{n+1}} \left[f_{n + 1}'(x)f_{n}(x) - f_{n}'(x) f_{n + 1}(x)\right]. }[/math]

Proof

Let [math]\displaystyle{ p_n }[/math] be a sequence of polynomials orthonormal with respect to a probability measure [math]\displaystyle{ \mu }[/math], and define[math]\displaystyle{ a_{n}=\langle x p_{n},p_{n+1}\rangle,\qquad b_{n}=\langle x p_{n},p_{n}\rangle,\qquad n\geq0 }[/math](they are called the "Jacobi parameters"), then we have the three-term recurrence[1][math]\displaystyle{ \begin{array}{l l}{{p_{0}(x)=1,\qquad p_{1}(x)=\frac{x-b_{0}}{a_{0}},}}\\ {{x p_{n}(x)=a_{n}p_{n+1}(x)+b_{n}p_{n}(x)+a_{n-1}p_{n-1}(x),\qquad n\geq1}}\end{array} }[/math]

Proof: By definition, [math]\displaystyle{ \langle xp_n, p_k \rangle = \langle p_n, xp_k \rangle }[/math], so if [math]\displaystyle{ k \leq n-2 }[/math], then [math]\displaystyle{ xp_k }[/math] is a linear combination of [math]\displaystyle{ p_0, ..., p_{n-1} }[/math], and thus [math]\displaystyle{ \langle xp_n, p_k \rangle = 0 }[/math]. So, to construct [math]\displaystyle{ p_{n+1} }[/math], it suffices to perform Gram-Schmidt process on [math]\displaystyle{ xp_n }[/math] using [math]\displaystyle{ p_n, p_{n-1} }[/math], which yields the desired recurrence.


Proof of Christoffel–Darboux formula:

Since both sides are unchanged by multiplying with a constant, we can scale each [math]\displaystyle{ f_n }[/math] to [math]\displaystyle{ p_n }[/math].

Since [math]\displaystyle{ \frac{k_{n+1}}{k_n}xp_n - p_{n+1} }[/math] is a degree [math]\displaystyle{ n }[/math] polynomial, it is perpendicular to [math]\displaystyle{ p_{n+1} }[/math], and so [math]\displaystyle{ \langle \frac{k_{n+1}}{k_n}xp_n, p_{n+1}\rangle = \langle p_{n+1}, p_{n+1}\rangle = 1 }[/math]. Now the Christoffel-Darboux formula is proved by induction, using the three-term recurrence.

Specific cases

Hermite polynomials:

[math]\displaystyle{ \sum_{k=0}^n \frac{H_k(x) H_k(y)}{k!2^k} = \frac{1}{n!2^{n+1}}\,\frac{H_n(y) H_{n+1}(x) - H_n(x) H_{n+1}(y)}{x - y}. }[/math][math]\displaystyle{ \sum_{k=0}^n \frac{He_k(x) He_k(y)}{k!} = \frac{1}{n!}\,\frac{He_n(y) He_{n+1}(x) - He_n(x) He_{n+1}(y)}{x - y}. }[/math]

Associated Legendre polynomials:

[math]\displaystyle{ \begin{align} (\mu-\mu')\sum_{l=m}^L\,(2l+1)\frac{(l-m)!}{(l+m)!}\,P_{lm}(\mu)P_{lm}(\mu')=\qquad\qquad\qquad\qquad\qquad\\\frac{(L-m+1)!}{(L+m)!}\big[P_{L+1\,m}(\mu)P_{Lm}(\mu')-P_{Lm}(\mu)P_{L+1\,m}(\mu')\big].\end{align} }[/math]

See also

References

  1. Świderski, Grzegorz; Trojan, Bartosz (2021-08-01). "Asymptotic Behaviour of Christoffel–Darboux Kernel Via Three-Term Recurrence Relation I" (in en). Constructive Approximation 54 (1): 49–116. doi:10.1007/s00365-020-09519-w. ISSN 1432-0940.