Classification of low-dimensional real Lie algebras

From HandWiki

This mathematics-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963.[1] It complements the article on Lie algebra in the area of abstract algebra.

An English version and review of this classification was published by Popovych et al.[2] in 2003.

Mubarakzyanov's Classification

Let 𝔤n be n-dimensional Lie algebra over the field of real numbers with generators e1,,en, n4.[clarification needed] For each algebra 𝔤 we adduce only non-zero commutators between basis elements.

One-dimensional

Two-dimensional

  • 2𝔤1, abelian 2;
  • 𝔤2.1, solvable 𝔞𝔣𝔣(1)={(ab00):a,b},
[e1,e2]=e1.

Three-dimensional

  • 3𝔤1, abelian, Bianchi I;
  • 𝔤2.1𝔤1, decomposable solvable, Bianchi III;
  • 𝔤3.1, Heisenberg–Weyl algebra, nilpotent, Bianchi II,
[e2,e3]=e1;
  • 𝔤3.2, solvable, Bianchi IV,
[e1,e3]=e1,[e2,e3]=e1+e2;
  • 𝔤3.3, solvable, Bianchi V,
[e1,e3]=e1,[e2,e3]=e2;
[e1,e3]=e1,[e2,e3]=αe2,1α<1,α0;
  • 𝔤3.5, solvable, Bianchi VII,
[e1,e3]=βe1e2,[e2,e3]=e1+βe2,β0;
  • 𝔤3.6, simple, Bianchi VIII, 𝔰𝔩(2,),
[e1,e2]=e1,[e2,e3]=e3,[e1,e3]=2e2;
  • 𝔤3.7, simple, Bianchi IX, 𝔰𝔬(3),
[e2,e3]=e1,[e3,e1]=e2,[e1,e2]=e3.

Algebra 𝔤3.3 can be considered as an extreme case of 𝔤3.5, when β, forming contraction of Lie algebra.

Over the field algebras 𝔤3.5, 𝔤3.7 are isomorphic to 𝔤3.4 and 𝔤3.6, respectively.

Four-dimensional

  • 4𝔤1, abelian;
  • 𝔤2.12𝔤1, decomposable solvable,
[e1,e2]=e1;
  • 2𝔤2.1, decomposable solvable,
[e1,e2]=e1[e3,e4]=e3;
  • 𝔤3.1𝔤1, decomposable nilpotent,
[e2,e3]=e1;
  • 𝔤3.2𝔤1, decomposable solvable,
[e1,e3]=e1,[e2,e3]=e1+e2;
  • 𝔤3.3𝔤1, decomposable solvable,
[e1,e3]=e1,[e2,e3]=e2;
  • 𝔤3.4𝔤1, decomposable solvable,
[e1,e3]=e1,[e2,e3]=αe2,1α<1,α0;
  • 𝔤3.5𝔤1, decomposable solvable,
[e1,e3]=βe1e2[e2,e3]=e1+βe2,β0;
  • 𝔤3.6𝔤1, unsolvable,
[e1,e2]=e1,[e2,e3]=e3,[e1,e3]=2e2;
  • 𝔤3.7𝔤1, unsolvable,
[e1,e2]=e3,[e2,e3]=e1,[e3,e1]=e2;
  • 𝔤4.1, indecomposable nilpotent,
[e2,e4]=e1,[e3,e4]=e2;
  • 𝔤4.2, indecomposable solvable,
[e1,e4]=βe1,[e2,e4]=e2,[e3,e4]=e2+e3,β0;
  • 𝔤4.3, indecomposable solvable,
[e1,e4]=e1,[e3,e4]=e2;
  • 𝔤4.4, indecomposable solvable,
[e1,e4]=e1,[e2,e4]=e1+e2,[e3,e4]=e2+e3;
  • 𝔤4.5, indecomposable solvable,
[e1,e4]=αe1,[e2,e4]=βe2,[e3,e4]=γe3,αβγ0;
  • 𝔤4.6, indecomposable solvable,
[e1,e4]=αe1,[e2,e4]=βe2e3,[e3,e4]=e2+βe3,α>0;
  • 𝔤4.7, indecomposable solvable,
[e2,e3]=e1,[e1,e4]=2e1,[e2,e4]=e2,[e3,e4]=e2+e3;
  • 𝔤4.8, indecomposable solvable,
[e2,e3]=e1,[e1,e4]=(1+β)e1,[e2,e4]=e2,[e3,e4]=βe3,1β1;
  • 𝔤4.9, indecomposable solvable,
[e2,e3]=e1,[e1,e4]=2αe1,[e2,e4]=αe2e3,[e3,e4]=e2+αe3,α0;
  • 𝔤4.10, indecomposable solvable,
[e1,e3]=e1,[e2,e3]=e2,[e1,e4]=e2,[e2,e4]=e1.

Algebra 𝔤4.3 can be considered as an extreme case of 𝔤4.2, when β0, forming contraction of Lie algebra.

Over the field algebras 𝔤3.5𝔤1, 𝔤3.7𝔤1, 𝔤4.6, 𝔤4.9, 𝔤4.10 are isomorphic to 𝔤3.4𝔤1, 𝔤3.6𝔤1, 𝔤4.5, 𝔤4.8, 2𝔤2.1, respectively.

See also

Notes

References