Clebsch representation
In physics and mathematics, the Clebsch representation of an arbitrary three-dimensional vector field [math]\displaystyle{ \boldsymbol{v}(\boldsymbol{x}) }[/math] is:[1][2] [math]\displaystyle{ \boldsymbol{v} = \boldsymbol{\nabla} \varphi + \psi\, \boldsymbol{\nabla} \chi, }[/math]
where the scalar fields [math]\displaystyle{ \varphi(\boldsymbol{x}) }[/math][math]\displaystyle{ , \psi(\boldsymbol{x}) }[/math] and [math]\displaystyle{ \chi(\boldsymbol{x}) }[/math] are known as Clebsch potentials[3] or Monge potentials,[4] named after Alfred Clebsch (1833–1872) and Gaspard Monge (1746–1818), and [math]\displaystyle{ \boldsymbol{\nabla} }[/math] is the gradient operator.
Background
In fluid dynamics and plasma physics, the Clebsch representation provides a means to overcome the difficulties to describe an inviscid flow with non-zero vorticity – in the Eulerian reference frame – using Lagrangian mechanics and Hamiltonian mechanics.[5][6][7] At the critical point of such functionals the result is the Euler equations, a set of equations describing the fluid flow. Note that the mentioned difficulties do not arise when describing the flow through a variational principle in the Lagrangian reference frame. In case of surface gravity waves, the Clebsch representation leads to a rotational-flow form of Luke's variational principle.[8]
For the Clebsch representation to be possible, the vector field [math]\displaystyle{ \boldsymbol{v} }[/math] has (locally) to be bounded, continuous and sufficiently smooth. For global applicability [math]\displaystyle{ \boldsymbol{v} }[/math] has to decay fast enough towards infinity.[9] The Clebsch decomposition is not unique, and (two) additional constraints are necessary to uniquely define the Clebsch potentials.[1] Since [math]\displaystyle{ \psi\boldsymbol{\nabla}\chi }[/math] is in general not solenoidal, the Clebsch representation does not in general satisfy the Helmholtz decomposition.[10]
Vorticity
The vorticity [math]\displaystyle{ \boldsymbol{\omega}(\boldsymbol{x}) }[/math] is equal to[2]
[math]\displaystyle{ \boldsymbol{\omega} = \boldsymbol{\nabla}\times\boldsymbol{v} = \boldsymbol{\nabla}\times\left( \boldsymbol{\nabla} \varphi + \psi\, \boldsymbol{\nabla} \chi\right) = \boldsymbol{\nabla}\psi \times \boldsymbol{\nabla}\chi, }[/math]
with the last step due to the vector calculus identity [math]\displaystyle{ \boldsymbol{\nabla} \times (\psi \boldsymbol{A})=\psi(\boldsymbol{\nabla}\times\boldsymbol{A})+\boldsymbol{\nabla}\psi\times\boldsymbol{A}. }[/math] So the vorticity [math]\displaystyle{ \boldsymbol{\omega} }[/math] is perpendicular to both [math]\displaystyle{ \boldsymbol{\nabla}\psi }[/math] and [math]\displaystyle{ \boldsymbol{\nabla}\chi, }[/math] while further the vorticity does not depend on [math]\displaystyle{ \varphi. }[/math]
Notes
References
- Aris, R. (1962), Vectors, tensors, and the basic equations of fluid mechanics, Prentice-Hall, OCLC 299650765
- Bateman, H. (1929), "Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and the associated variational problems", Proceedings of the Royal Society of London A 125 (799): 598–618, doi:10.1098/rspa.1929.0189, Bibcode: 1929RSPSA.125..598B
- Benjamin, T. Brooke (1984), "Impulse, flow force and variational principles", IMA Journal of Applied Mathematics 32 (1–3): 3–68, doi:10.1093/imamat/32.1-3.3, Bibcode: 1984JApMa..32....3B
- Clebsch, A. (1859), "Ueber die Integration der hydrodynamischen Gleichungen", Journal für die Reine und Angewandte Mathematik 1859 (56): 1–10, doi:10.1515/crll.1859.56.1, https://zenodo.org/record/1448884
- Lamb, H. (1993), Hydrodynamics (6th ed.), Dover, ISBN 978-0-486-60256-1
- Luke, J.C. (1967), "A variational principle for a fluid with a free surface", Journal of Fluid Mechanics 27 (2): 395–397, doi:10.1017/S0022112067000412, Bibcode: 1967JFM....27..395L
- Morrison, P.J. (2006). "Hamiltonian fluid mechanics". Encyclopedia of Mathematical Physics. 2. Elsevier. pp. 593–600. doi:10.1016/B0-12-512666-2/00246-7. ISBN 9780125126663. http://web2.ph.utexas.edu/~morrison/06EMP_morrison.pdf.
- Rund, H. (1976), "Generalized Clebsch representations on manifolds", Topics in differential geometry, Academic Press, pp. 111–133, ISBN 978-0-12-602850-8
- Salmon, R. (1988), "Hamiltonian fluid mechanics", Annual Review of Fluid Mechanics 20: 225–256, doi:10.1146/annurev.fl.20.010188.001301, Bibcode: 1988AnRFM..20..225S, https://zenodo.org/record/1063670
- Seliger, R.L.; Whitham, G.B. (1968), "Variational principles in continuum mechanics", Proceedings of the Royal Society of London A 305 (1440): 1–25, doi:10.1098/rspa.1968.0103, Bibcode: 1968RSPSA.305....1S
- Serrin, J. (1959), "Mathematical principles of classical fluid mechanics", in Flügge, S.; Truesdell, C., Strömungsmechanik I, Encyclopedia of Physics / Handbuch der Physik, VIII/1, pp. 125–263, doi:10.1007/978-3-642-45914-6_2, ISBN 978-3-642-45916-0, Bibcode: 1959HDP.....8..125S
- Wesseling, P. (2001), Principles of computational fluid dynamics, Springer, ISBN 978-3-540-67853-3
- Wu, J.-Z.; Ma, H.-Y.; Zhou, M.-D. (2007), Vorticity and vortex dynamics, Springer, ISBN 978-3-540-29027-8
Original source: https://en.wikipedia.org/wiki/Clebsch representation.
Read more |