Clebsch representation

From HandWiki

In physics and mathematics, the Clebsch representation of an arbitrary three-dimensional vector field [math]\displaystyle{ \boldsymbol{v}(\boldsymbol{x}) }[/math] is:[1][2] [math]\displaystyle{ \boldsymbol{v} = \boldsymbol{\nabla} \varphi + \psi\, \boldsymbol{\nabla} \chi, }[/math]

where the scalar fields [math]\displaystyle{ \varphi(\boldsymbol{x}) }[/math][math]\displaystyle{ , \psi(\boldsymbol{x}) }[/math] and [math]\displaystyle{ \chi(\boldsymbol{x}) }[/math] are known as Clebsch potentials[3] or Monge potentials,[4] named after Alfred Clebsch (1833–1872) and Gaspard Monge (1746–1818), and [math]\displaystyle{ \boldsymbol{\nabla} }[/math] is the gradient operator.

Background

In fluid dynamics and plasma physics, the Clebsch representation provides a means to overcome the difficulties to describe an inviscid flow with non-zero vorticity – in the Eulerian reference frame – using Lagrangian mechanics and Hamiltonian mechanics.[5][6][7] At the critical point of such functionals the result is the Euler equations, a set of equations describing the fluid flow. Note that the mentioned difficulties do not arise when describing the flow through a variational principle in the Lagrangian reference frame. In case of surface gravity waves, the Clebsch representation leads to a rotational-flow form of Luke's variational principle.[8]

For the Clebsch representation to be possible, the vector field [math]\displaystyle{ \boldsymbol{v} }[/math] has (locally) to be bounded, continuous and sufficiently smooth. For global applicability [math]\displaystyle{ \boldsymbol{v} }[/math] has to decay fast enough towards infinity.[9] The Clebsch decomposition is not unique, and (two) additional constraints are necessary to uniquely define the Clebsch potentials.[1] Since [math]\displaystyle{ \psi\boldsymbol{\nabla}\chi }[/math] is in general not solenoidal, the Clebsch representation does not in general satisfy the Helmholtz decomposition.[10]

Vorticity

The vorticity [math]\displaystyle{ \boldsymbol{\omega}(\boldsymbol{x}) }[/math] is equal to[2]

[math]\displaystyle{ \boldsymbol{\omega} = \boldsymbol{\nabla}\times\boldsymbol{v} = \boldsymbol{\nabla}\times\left( \boldsymbol{\nabla} \varphi + \psi\, \boldsymbol{\nabla} \chi\right) = \boldsymbol{\nabla}\psi \times \boldsymbol{\nabla}\chi, }[/math]

with the last step due to the vector calculus identity [math]\displaystyle{ \boldsymbol{\nabla} \times (\psi \boldsymbol{A})=\psi(\boldsymbol{\nabla}\times\boldsymbol{A})+\boldsymbol{\nabla}\psi\times\boldsymbol{A}. }[/math] So the vorticity [math]\displaystyle{ \boldsymbol{\omega} }[/math] is perpendicular to both [math]\displaystyle{ \boldsymbol{\nabla}\psi }[/math] and [math]\displaystyle{ \boldsymbol{\nabla}\chi, }[/math] while further the vorticity does not depend on [math]\displaystyle{ \varphi. }[/math]

Notes

  1. 1.0 1.1 (Lamb 1993)
  2. 2.0 2.1 (Serrin 1959)
  3. (Benjamin 1984)
  4. (Aris 1962)
  5. (Clebsch 1859)
  6. (Bateman 1929)
  7. (Seliger Whitham)
  8. (Luke 1967)
  9. (Wesseling 2001)
  10. (Wu Ma)

References