Cofunction

From HandWiki
Sine and cosine are each other's cofunctions.

In mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles (pairs that sum to one right angle).[1] This definition typically applies to trigonometric functions.[2][3] The prefix "co-" can be found already in Edmund Gunter's Canon triangulorum (1620).[4][5]

For example, sine (Latin: sinus) and cosine (Latin: cosinus,[4][5] sinus complementi[4][5]) are cofunctions of each other (hence the "co" in "cosine"):

[math]\displaystyle{ \sin\left(\frac{\pi}{2} - A\right) = \cos(A) }[/math][1][3] [math]\displaystyle{ \cos\left(\frac{\pi}{2} - A\right) = \sin(A) }[/math][1][3]

The same is true of secant (Latin: secans) and cosecant (Latin: cosecans, secans complementi) as well as of tangent (Latin: tangens) and cotangent (Latin: cotangens,[4][5] tangens complementi[4][5]):

[math]\displaystyle{ \sec\left(\frac{\pi}{2} - A\right) = \csc(A) }[/math][1][3] [math]\displaystyle{ \csc\left(\frac{\pi}{2} - A\right) = \sec(A) }[/math][1][3]
[math]\displaystyle{ \tan\left(\frac{\pi}{2} - A\right) = \cot(A) }[/math][1][3] [math]\displaystyle{ \cot\left(\frac{\pi}{2} - A\right) = \tan(A) }[/math][1][3]

These equations are also known as the cofunction identities.[2][3]

This also holds true for the versine (versed sine, ver) and coversine (coversed sine, cvs), the vercosine (versed cosine, vcs) and covercosine (coversed cosine, cvc), the haversine (half-versed sine, hav) and hacoversine (half-coversed sine, hcv), the havercosine (half-versed cosine, hvc) and hacovercosine (half-coversed cosine, hcc), as well as the exsecant (external secant, exs) and excosecant (external cosecant, exc):

[math]\displaystyle{ \operatorname{ver}\left(\frac{\pi}{2} - A\right) = \operatorname{cvs}(A) }[/math][6] [math]\displaystyle{ \operatorname{cvs}\left(\frac{\pi}{2} - A\right) = \operatorname{ver}(A) }[/math]
[math]\displaystyle{ \operatorname{vcs}\left(\frac{\pi}{2} - A\right) = \operatorname{cvc}(A) }[/math][7] [math]\displaystyle{ \operatorname{cvc}\left(\frac{\pi}{2} - A\right) = \operatorname{vcs}(A) }[/math]
[math]\displaystyle{ \operatorname{hav}\left(\frac{\pi}{2} - A\right) = \operatorname{hcv}(A) }[/math] [math]\displaystyle{ \operatorname{hcv}\left(\frac{\pi}{2} - A\right) = \operatorname{hav}(A) }[/math]
[math]\displaystyle{ \operatorname{hvc}\left(\frac{\pi}{2} - A\right) = \operatorname{hcc}(A) }[/math] [math]\displaystyle{ \operatorname{hcc}\left(\frac{\pi}{2} - A\right) = \operatorname{hvc}(A) }[/math]
[math]\displaystyle{ \operatorname{exs}\left(\frac{\pi}{2} - A\right) = \operatorname{exc}(A) }[/math] [math]\displaystyle{ \operatorname{exc}\left(\frac{\pi}{2} - A\right) = \operatorname{exs}(A) }[/math]

See also

References